
A Guide and General Method for
Estimating Parameters and their

Confidence Intervals in Agent-Based
Simulations with Stochasticity

Christopher Zosh, Nency Dhameja, Yixin Ren, and Andreas Pape

October 30, 2024

Abstract

While many Agent-Based Models (ABMs) traditionally serve to demon-
strate proof of principle type findings, it is becoming increasingly common
and desirable for such models to be used directly for estimation. Given the in-
creasing prevalence of computational models across many disciplines, the need
for accessible and econometrically sound methods for estimating these models
in one’s toolkit has never been greater.

Taking the view that ABMs are in many ways analogous to structural equa-
tion models, we detail a fairly generalizable estimation framework for bringing
nearly any agent-based model to panel data in a manner akin to structural
regression. We structure this paper with the aim of being an accessible guide
for unfamiliar analysts to pick up and use, covering finding best fitting pa-
rameters (including summarizing and aggregating model output, establishing
a fitness function, and optimization), estimating critical values using block-
bootstrapping (including how to interpret confidence intervals and hypothe-
sis testing in this context), and using Monte-Carlo simulations to establish
model/estimator properties (including simulations for decomposing sources of
estimator imprecision).

1



1 Introduction

While agent-based models (ABMs) and computational simulations may seem new,
their history in economics (and in the social sciences at large) can be traced back
to at least as early as Schelling’s segregation model [Schelling, 1971]. Predating the
prevalence and computational power of today’s computers, his model was performed
using dimes and pennies on a chess board. Despite the simplicity of the rules intro-
duced, no easy closed form characterization of the model’s dynamics could be found,
and so to characterize the model, computations over the board were performed (by
hand), aggregated, and reported. Wielding this unconventional model and method
of analysis, he illuminated how a small level of intolerance can yield a surprisingly
high degree of macro level segregation in an extremely simple system. Since then, the
role such methods and models can play has been the subject of debate in economics.

While many utilizations of such models traditionally serve to demonstrate proof
of principle type findings, as in Schelling’s case, it is becoming increasingly common
and desirable for ABMs to be used directly for estimation in much the same way
regressions are used. While some great work has been done on developing elements of
’Agent-Based Econometric Methods’ (see ), there remains a serious lack of established
(and accessible) ’best practices.’ What we need is a start-to-finish practitioner’s
guide which lays bare a methodology that is accessible and is grounded in existing
econometric methods.

With this paper, we aim to do just this. We propose a fairly generalizable method-
ology for bringing ABMs to panel data with two goals in mind. First, this paper
summarizes many fundamental concepts surrounding ABM estimation, allowing it to
serve as a ’starter guide’ for any interested analyst with an ABM. Second, we detail
constructing critical value(s) via block-bootstrapping which, to the best of our knowl-
edge, is fairly under-explored in the context of ABMs (Guilfoos and Pape [2016]).
Further, we introduce a Monte-Carlo simulation which can clarify the magnitude to
which different sources contribute to estimate imprecision.

2 Literature Review

There is a small but growing number of texts on Agent-Based Modeling and com-
putational modeling at large (Sayama [2015], Wilensky and Rand [2015]) and in the
context of social systems more specifically (Miller and Page [2007], Tesfatsion and
Judd [2006], Schmedders and Judd [2014], Romanowska et al. [2021]). While each
of these texts in turn provides an in-depth analysis of many important features of
ABMs, including laying forth design principles and exploring important past or po-

2



tential future applications, none provide a thorough treatment of how one should
bring such models to data.

In the economics simulation literature, a fair number of methodological contri-
butions have been made. A number of publications do well to provide a general
overview of some aspects of ABM estimation, [Bargigli, 2017], but leave many de-
tails of their application to the reader and make no mention of bootstrapping con-
fidence intervals. A classic text on simulation based methods at large [Gourieroux
and Monfort, 1996] quite thoroughly details econometric considerations of computa-
tional models, but implicitly constrains much of its analysis and proposed methods
to the space of models which can be fully described by a system of equations. For
many ABMs, this is impossible or at least fairly difficult, as there is often both a
non-trivial role that randomness plays and some non-trivial iterative / algorithmic
element to its application.1 Further, this text may prove hard to engage with for
some non-econometricians.

We also summarize a number ideas informed by the structural estimation litera-
ture both within and outside economics (including Hoyle [2012] and Greene [2017])
which provide a number of useful insights, particularly on how to interpret the ele-
ments and outputs of the estimation exercise.

Finally, when formalizing the application of block-bootstrapping for critical values
in our context and related Monte-Carlo simulations, a great deal of attention was
given in particular to Davidson and MacKinnon [2002] and MacKinnon [2006].

3 ABMs as Structural Models

3.1 Comparing ABMs and SEMs

One way to think about bringing agent-based models to data is to view ABMs
through the lens of structural equation models. SEMs and ABMs can both be
thought of as mappings from some vector of inputs X to some vector of outputs
Y which often unfolds over time given some set of parameters θ (though these map-
pings may not be one-to-one for some ABMs). Just like SEMs, ABMs also utilize
presumed or hypothesized causal connections in these mappings which are often mo-
tivated by some combination of existing theory, empirical findings, and everyday
observation. Further, in our context, ABMs are analogous to a particular type of
SEM estimation technique structural regression (SR) in that, taking the structural

1As an exercise to demonstrate this, try describing Schelling’s fairly simple segregation model
[Schelling, 1971] as a system of equations.

3



model as given, we aim to find best fitting parameters (and test their significance) by
finding parameters that minimize the loss between observed data and some moments
of summarized model output over time.

While there does exist an intuitive mapping of ABM to SEM and ABM estimation
to SR as given above, the use of ABMs as a SEM does require some methodological
adjustment. Many of the features of ABMs which serve often as strengths also
present unique sets of challenges during estimation. First, they are extremely flexible
in the types of operations they can represent by allowing for procedural / algorithmic
based representations of system components in addition to typical equations. This
additional flexibility can allow for the relaxation of common modeling assumptions
in unique and possibly more realistic ways (e.g. rational decision making economic
models). This also means, however, that finding closed form solutions for parameters
which maximize our measure of fit is often impossible (via maximum likelihood for
example). Instead, exploration of the parameter space must be done using one of a
number of (often stochastic) optimization techniques which can settle on sub-optimal
solutions by chance. This will provide some additional challenges when estimating
and interpreting our confidence intervals. Secondly, ABMs are often utilized to
model non-trivial interaction between many smaller units and exhibit a degree of
path dependence. This means ideally we’ll need data on a non-trivial number of
groups of units which may have interaction within groups, but not between groups.
This will provide us with multiple, independent ’group level’ observations. This
will be particularly useful for creating blocks of data we can use to bootstrap for
critical values. Lastly, path dependence combined without the assumption that errors
additively affect the system can create some additional challenges. For a model with
a stochastic component, fairly different outcomes can be produced even from the
same initial conditions by chance alone. This means a number of model runs under
the same conditions will need to be collected and aggregated anytime we want to
compare the model to data. We’ll cover each of these challenges and how our method
aims to address them in greater detail in later sections.

3.2 Interpreting Estimates from (ABMs as) SEMs

In the following sections, we’ll delve into one way to fit your model and some tests
for estimate accuracy and precision. Importantly, we ought to make sense of what
exactly we would learn by estimating such a model in the first place. Knowing
that ABMs are built upon presumed causal connections encoded using a particular
functional form the modeler specifies, it can be tricky to make sense of what precisely
is uncovered when we fit such a model to data. How do we interpret our parameters

4



and confidence intervals? Can we say anything about causality?
SEMs themselves have a history of confused interpretation (see Hoyle [2012] for

further discussion) but Pearl 2009 provides a resolution. Hoyle [2012] does well to
summarize the inputs and outputs of SEM estimation and how to think about them.
We modify and build upon this summary to clarify how this maps to the estimation
exercise we’ll apply to our ABM in question.

The (SEM) inference method takes three inputs [Hoyle, 2012]:

• A set of causal assumptions A and a model MA which encodes these assump-
tions. MA in this context is our ABM.

• A set of questions (queries) Q which the model and data can both speak to.
Commonly, this takes the form ‘What is the treatment effect of X on Y?’

• A set of data D which the modeler presumes is generated by a true underlying
data-generating process which is consistent with the causal assumptions A.

In the case of an ABM, we argue a few more inputs are need to be non-trivially
chosen particularly in the case of an ABM in addition to the inputs above:

• A summary function S(.) which takes output from the model MA and produces
summary statistic(s) from that output which will be compared to the output
in data.

• A aggregation function Agg(r, .) which takes summarized output from multiple
model runs and aggregates them in a way such that a comparison to data can
be made. The simplest case of this would be to get averages of your output
of interest across runs, but perhaps averages of different moments are also of
interest.

• A fitness function fit(.) which evaluates how well your summarized model
output and the data satisfy your desired measure of goodness of fit.

• An optimization technique search(δ, .) which aims to return a set of parameters
which maximizes your measure of fit (or minimizes loss, depending on how you
characterize your fitness function). Unlike in typical SRs, maximizing fitness
will often have no closed form solution, so we’ll have to choose a method for
searching the parameter space.

Using these inputs, the following outputs are produced [Hoyle, 2012]:

5



• A set of statements A* that are the logical implications of A. 2 These have
nothing to do with data and come from the model MA which encodes A in
some way. These can be as simple statements that follow directly from A or
can take the form of more complex model properties.

• A set of claims C about the magnitudes of the queries in Q which are generated
using our data and are conditional on our our assumptions A (more specifically
our encoding of A, MA). These are our estimated structural parameters.

• A list of T testable statistical implications of A may also become apparent
which are not utilized in the fitness function explicitly. These emergent obser-
vations can then be brought back to the data to see if the MA is consistent with
the data. This can serve as an ex-post form of partial model validation. For
example, if it turns out neighboring agents have highly correlated outcomes in
model output, you can determine to what degree that matches their correla-
tions in data. This is analogous to what Wilensky and Rand [2015] call Macro
Empirical Validation, which we’ll discuss further in a later section.

In addition to these outputs, we take interest in one more output which is
typically estimated in SRs:

• Critical values for each of the estimated structural parameters (generated with
block-bootstrapping) which we can then use to establish with what precision
we the parameters of the model are estimated and further, if this precision is
enough to establish significance of the estimates.

Importantly, our claims C about our queries Q are conditional on MA. In words,
the statement being made is ”If you believeMA, then you must also accept the claims
in C.” Hence, the ability to generalize the claims C to reality hinges greatly on the
validity of the model in question. The inverse is also true, in that if the model has a
high degree of validity, as could be the case for a meticulously validated digital twin
(to give an extreme case), these statement can be extremely powerful.

It is also important to make clear what establishes validity and what establishes
if the model is reasonably identified. This will be made clearer in context of the
method we’re recommending in later sections.

2It may seem A* should be obvious given A, but that is often not the case. The process of
modeling itself can be seen in part as a tool for formalizing and providing a method to give analysts
access to A* from some set of assumptions A [Hoyle, 2012]. Along these lines, the term Emergence,
which is commonly used in complex-systems circles, refers to properties of model output which
aren’t obvious from looking at the parts used to construct the model.

6



4 On Data

For the purposes of applying this method, we’ll assume the modeller has panel data
on hand they’re interested in bringing their ABM to. This data is structured in
such a way that each observation di,t represents the recorded behaviors of interest by
unit i at some time t, which can be broken into inputs xi,t and outputs yi,t. These
units i can be anything (particles, organisms, organizations, firms, countries e.t.c.)
but henceforth we’ll refer to these units as individuals. Presumably if we’re using
an ABM, we have a model in which these individuals i interact with each other at
some level non-trivially. Our first task is to think about the boundaries of those
interactions and where that’s captured in our data.

We define a group g as a set of units which have no interaction with units outside
the set at any point over the time period of our panel. We’ll also denote the number
of groups as G and the size of a group g as Sizeg Every unit should be in a group
and no unit should exist in more than one group. For example, if your panel data
comes from a lab experiment where groups of N players play a game over a number
of rounds, a natural grouping would be the lab defined groups, of which you have
N of. Groupings also arise in many natural contexts. Depending on the variables of
interest, groups can be households, cities, communities, or disconnected networks.
This grouping process allows us to establish the scale at which we have independent
clusters of observations. Importantly, we want the groupings to contain as few units
as possible without violating our interaction criteria above.

Next, we define a block b as all of the observations di,t over time t corresponding
to units i within the same group g. Formally:

bg = {di,t|∀t, i ∈ g} (1)

These blocks will be the unit we use to resample our data when we eventually
block bootstrap to generate confidence intervals. We should have a block for each
group g, meaning we have G blocks. We’ll denote the set of blocks {b1, ..., bG} as set
B. Formally

B = {bg|∀g ∈ {1, ..., G}} (2)

Note the data contained within all the blocks bg in B is precisely the same exact
data contained within D. It has simply been grouped into independent blocks.

Another assumption we’ll make regarding the data is that it doesn’t suffer from
any substantial attrition issues. Attrition occurs when individuals drop out of the
panel data for non-random reasons. This can introduce selection bias issues. We

7



deem handling such issues outside of the scope of this paper, but point readers to a
number of discussions for more info, see Baltagi [2005] or [Greene, 2017].

5 Validation

5.1 About Validation

Perhaps unsurprisingly, Validity has come to mean a number of similar but distinct
things in different fields. Below we discuss what is meant by validity typically in the
context of ABMs and what economists mean, why they’re both valuable, and some
existing methods for establishing model validity.

In [Wilensky and Rand, 2015], Validation (or model-to-reality validation) is de-
fined as the process of ensuring there is a correspondence between the model in
question MA and reality. If we suppose there is some underlying Data-Generating
Process (DGP) in the real world for our phenomena in question which takes some
inputs X and returns some output of interest Y , then Model validation is the process
of establishing reasonable similarity between this DGP, DGPReality and our model

MA which we can also notate as DGPModel, that takes some inputs X̂ (which may
or may not coincide with X) and returns some output.

Importantly, the model need not be a replica of reality. A good model should
capture the salient features we observe in reality which we believe to be relevant to
the question we’re trying to answer while leaving out what we might consider super-
fluous. These included features will often be simplified abstractions from the actual
underlying processes, but importantly should operate in the same spirit. [Wilensky
and Rand, 2015] go on to distinguish between a few different types of model validity
which are captured in part or full in a number of other texts on ABMs and simulation
(including Sayama [2015] and to name a few).

First, validity of a model can be measured at multiple levels. Micro-Validity as-
sesses how well the underlying components of the model match reality (e.g. agent
behavior, interaction rules, etc) while Macro-Validity assesses how well features (in-
cluding emergent features) of model output seem to match reality. Another distinc-
tion they illuminate lies in how validity is determined. What [Wilensky and Rand,
2015] call Face validity aims to qualitatively establish correspondence by identifying
observable similarities in model features or outputs and establishing an absence of
unreasonable assumptions. Empirical validation instead aims to establish quanti-
tative correspondence by evaluating fitness between model generated data and real
world data.

8



Such discussions on degree of correspondence also have a long history in eco-
nomics. [Lucas, 1976] makes the case for the importance of micro-founded macro
models. This contribution solidified for much of the field that a valid macro model
must not only reproduce features of output, but also must do so using equations de-
rived from interacting micro-level agents with behavior and interaction rules which
are also reasonable. From this perspective then, the term ’micro-foundations’ is
simply another name which economists have for ’micro-validity.’

While the validity concepts mentioned above may seem complete, we must also
consider how the DGP corresponding to the data we have on hand DGPData corre-
sponds to both the our model DGPModel and the DGP which guides outcomes for the
population of interest in the real world DGPReality. In economic circles, the terms
Internal Validity and External Validity speak to such concerns.

Internal Validity refers to the degree to which our we can learn about the pop-
ulation being studied while External Validity refers to how much our estimates can
tell us about other populations Angrist and Pischke [2008]. Internal validity can be
thought of as the degree to which DGPModel and DGPData correspond, while exter-
nal validity focuses more-so on the degree of correspondence between DGPData and
DGPReality. Collecting data from a lab experiment for example, can allow for a high
degree of internal validity, as we have a great deal of control in both constructing
and observing the circumstances under which certain outcome phenomena occur.
This data is often less externally valid however, particularly in social systems, as the
highly controlled circumstances under which the data was collected differs from the
circumstances faced in the real world. Thus there is often a tension between internal
validity (which establishes how well you can answer a question) and external validity
(which establishes how generalizable your findings are to populations outside of the
population you collected data from) when making choices about data sources.

Importantly, this notion of model-to-reality validation, while not mentioned ex-
plicitly, can be achieved through reasonable levels of both internal and external
validity. If there is a correspondence between DGPModel and DGPData and there’s
also a correspondence between DGPData and DGPReality, then there must be a corre-
spondence between DGPModel and DGPReality by transitivity. Less formally, if your
estimates are both internally and externally valid, then it must be the case that your
model in question has some degree of ’model-to-reality’ validity.

5.2 Model Validation Techniques

How to sufficiently validate a structural model is still a question subject to much
debate. Below we briefly discuss several common methods employed for the purposes

9



of model validation.
The simplest and arguably most necessary form of (model-to-reality) validation is

to lay bare and make accessible your model design and results. Taking this ’Hands-
Above the Table’ approach with both the models design and how its output compares
to the data serve as basic forms of micro and macro face validation respectively.
Ultimately this clarity allows readers to perform their own qualitative assessment
and, through feedback, serves as an important part of the model selection process.

Docking is another fairly common method of model validation which aims to
’barrow’ the validity of existing models in a domain of study. Often times, ABMs
are used to extend an existing model in a discipline. This often takes the form
of relaxing a number of common assumptions (e.g. well-mixing agents, rational
expectations). When such an approach is taken, implementing a version of your
model without assumption relaxation (which aims to emulate the discipline model
you’re extending) can be a powerful validation technique. If the model which the
ABM extends is fairly valid, then by showing your ABM in question produces similar
outcomes using a similar construction in the special case, the ABM in question is
equally Micro and Macro valid under this set of assumptions. Further, the general
case of the model can only be less valid to the extent that the relaxation in the model
makes it so.

Another test for macro-validity is sometimes possible when unexpected patterns
in model output utilizing our best fitting parameters occurs. When this happens,
a natural next step is to see if similar phenomenon appear in the real world or in
data on the population in question. Importantly, this output phenomenon should
not be encoded into the fitness function (i.e. we shouldn’t select for it) and it should
be reasonably possible for this outcome to not occur over the space of all possible
parameter combinations (i.e. it’s not ‘cooked-in’). Intuitively the argument goes,
if our model, using best fitting parameters, is producing features we see in the real
world that do not have to occur and which we did not search for explicitly, then this
model is demonstrating it can approximate reality pretty well.

A neighboring concept to validation, which aims to establish a reasonable cor-
respondence between model and reality is Model Selection, which aims to establish
which model from a set of models best corresponds to some set of data. One such
method which should be well defined in the context of ABMs is the lasso method
Tibshirani [1996], which aims to shrink parameters to 0 by making them costly in the
fitness function. This is only well defined, however, in contexts where the estimated
parameters are not required to be greater than 0 for the model to be well defined.

Lastly, if multiple models are considered with fairly different functional forms,
an ’out-of-sample horse race’ can be considered. Simply fit each model (in the way

10



described below in section 6) on a portion of your dataset - the training set, and then
evaluate how well their output aligns with the remaining portion of your dataset -
the evaluation set. Importantly, these sets should be broken up into blocks first (as
discussed in section 4) before assigning them to a dataset. This method is somewhat
outside of the scope of this paper, as it pertains more to prediction than to expla-
nation of a phenomenon of interest, but we felt it was worth mentioning at least
briefly.

6 Estimating Best Fitting Parameters

With some panel data D and an ABM in hand, denoted MA, which takes a set of
parameter θ and some input data X (from D) as input and returns a vector of outputs
YMA

of interest from MA(θ,X), we’d like to find a particular set of parameters θ∗

which, when used in our model MA, produces output which emulates the salient
features we see in our data D. Inherently, this means we need:

• A summary function S(.) which makes output from MA comparable to the
data D.

• An aggregation function Agg(.) which aggregates summarized output from mul-
tiple runs of MA.

• A fitness function fit(.) which establishes how to compare aggregated output
from MA and D.

• An optimization technique search(.) which searches for best fitting parameters
θ∗.

With these four functions in hand, we estimate the best fitting parameters θ∗ by
doing the following operation:

searchθ∈Θ(fit(YMA
, YD), δ) → θ∗ (3)

where
Agg(S(MA, θ,X), r) → YMA

(4)

In other words, we’re searching for the set of parameters θ∗ which maximizes
the measure of fit between our summarized ABM output YMA

and what we observe
regarding the relevant variable in data YD.

11



6.1 Defining a Summary Function

As noted above, a summary function is a wrapper around your model which makes
your model output compatible to data. So why might it not be already?

ABMs and their output can take many forms, so it is not uncommon for model
output to not be directly comparable to the data in hand. A Summary function
S(MA, θ,X) can serve this need by re-forming the output from MA into something
which corresponds to what is observed in data. How a model should be summarized
highly depends on the model in question, but often it can take the form of summary
statistics (mean and variance in) some outcome achieved by a type of agents or across
agents but which utilizes local information.

For example, the Schelling model looks at individual agents moving in a positions
in a lattice based on their personal preferences to be by other same-type agents.
The model aims to characterize to what degree long-run, macro-level segregation
can result from these simple agent-level movement decisions. At the end of each
run, the model results in some fixed configuration of agents positioned on a lattice
(under non-trivial cases). To say something about macro-level segregation, each
resulting configuration needs to be summarized in some way, i.e. a mapping from
the configuration to ’macro-level segregation’ needs to occur. In this example, for a
configuration, macro-level segregation is summarized by the average portion of same-
type neighbors each agent has. Easily we can imagine other such summary functions,
the simplest modification of which could be to capture both the average and variance
in same type neighbors had in the final configuration. Also, if we’re interested in
phenomenon over time, as we are when using panel data, then we should plot this
same-type neighbor ratio over each step of the model.

6.2 Defining an Aggregation Function

In a typical simple linear regression, the parameters and the error term are additively
separable and the expectation of the error is 0. To get the model estimate of the
expected output E(Ŷ ) for a particular set of inputs X, you compute what Y would
be given your estimated parameters θ̂ and observed Xs, ignoring the error term (or
rather, taking the expectation, as the errors are 0 in expectation). Since the stochas-
tic component in many ABMs cannot be easily separated out, the same cannot be
done in our context. Instead, we need to estimate our expected output computation-
ally by running a number of runs of the model under the same conditions. Given
this, a common simple summary function S(.) which returns our expected output
may take the form:

12



Agg(S(MA, θ,X), r) =
1

r

r∑
1

S(MA,r(θ,X)) (5)

Note, however, that the summary function S(.) can also return other information
as well. For example, if you’re interested in using the first two moments of output
in your fitness function fit(.), your summary function S(.) can return both the
estimated mean and the estimated variance of your run output. In such cases, the
aggregation function Agg(.) should find the average across the r model runs for each
summary statistic of interest returned by S(.) for the fitness function to use.

It may also be the case that aggregations may want to be made separately at the
group level. In such cases, instead of returning a summary statistics for all agents
in the model, summary statistics can be calculated individually for each group of
agents.

6.3 Defining a Fitness Function

A fitness function fit(.) defines a metric for evaluating how well your model is per-
forming. This serves as the objective function we’ll try to optimize over. In our case,
we’re looking for parameters θ∗ which have our model produce the important fea-
tures we observe in data. Using a familiar metaphor: if output YMA

is a completed
test and YD is the answer key, then fit(.) is the grader who takes the completed
test and answer key and returns a grade (commonly referred to as fitness if we are
maximizing or loss if we are minimizing). On what basis, then, should we grade our
models output?

In maximum likelihood estimation (MLE), the goal is to find the parameters θ∗

which, given some assumed distribution, have the highest chance to generate output
YMA

that matches the output observed in data YD. This likelihood function can
be thought of as a fitness function which MLE maximizes over. For most ABMs,
unfortunately, MLE remains infeasible as a likelihood function is often not derivable.

Another common approach is to score the output using the euclidean distance
between some summary statistics of model output YMA

and the output observed in
data YD. In such cases, the distance score is the fitness function and the goal is to
find the parameters θ∗ which minimize that score. Mean Average Error (MAE) and
Mean Squared Error (MSE) are two such specifications of this, with MSE being far
more common. If averages are taken across all agents, then the MSE minimizing

13



fitness function can be given by:

fit(θ) =
1

NT

G∑
g=1

T∑
t=1

(YMA,t − YD,t)
2 (6)

where again,
Agg(S(MA, θ,X), r) → YMA

(4)

If separate summary statistics are computed at the group level g, then we can
instead define the MSE minimizing fitness function, which weights group level fitness
by group size as:

fit(θ) =
1

NT

G∑
g=1

Sizeg
N

T∑
t=1

(YMA,g,t − YD,g,t)
2 (7)

where,
Agg(S(MA, θ,X), r) → YMAg=1, ..., YMAg=G (8)

As mentioned earlier, you can also generalize this to problems where you want to
match multiple moments . For example, if your aggregation function returns both a
mean Y mean

MA
and a variance Y V ariance

MA
of outcomes across all agents, then your fitness

function could be the weighted sum of the individual MSE scores (where variance
gets a weight of α) in the following way:

fit(θ) =
1

NT

N∑
i=1

T∑
t=1

((Y mean
MA,t − Y mean

D,t )2 + α(Y variance
MA,t − Y variance

D,t )2) (9)

where,
Agg(S(MA, θ,X), r) → Y mean

MA
, Y variance

MA
(10)

This is something that a valid ABM may have a comparative advantage in over
other methods, as simple interaction rules can capture non-trivial patterns of het-
eroskedasticity (changing variance over time), including convergence behaviors.

6.4 Specifying an Optimization Technique

Now that we’ve defined what we’re looking for (a θ∗ which scores best using our
fit(.) function), we need to define how we’re going to find it. Unlike in many simple
regression models, there is rarely a closed form solution or best algorithm to find θ∗.
We must instead explore the parameter space manually. This is our search algorithm
search(.) (a.k.a. our optimization technique).

14



How is the space searched? There is an immense literature on optimization
techniques for broad classes of problems, the broadest of which are referred to as
Metaheuristics. These comprise a large number of stochastic optimization techniques
which utilize some degree of randomness and pass success to strategically explore
parameter spaces in search of an optimal solutions. They are particularly useful
for solving difficult, nonlinear problems which have no closed form solution. This
makes them ideal in many ways for applications in our context.Luke [2013] does an
impeccable job at making accessible both the application and intuition of a great
number of these methods, starting from the very basics.3 Our goal is not to recreate
this text within the confines of this paper, but instead to provide enough of an
overview for a reader to engage with basic aspects of a few commonly used methods
and the remainder of this paper.

In general, these optimization methods occur over multiple rounds, during each
of which candidates (sets of parameters) are selected and then evaluated. Addition-
ally, nearly all methods will take some set of search parameters δ to guide how the
parameter space is searched (i.e. how candidate parameter sets are selected each
round). The main tension in many of these optimization techniques comes down to
exploration vs. exploitation. On one hand, if a set of parameters is achieving a fairly
high level of fitness, it’s reasonable to evaluate a candidate set of parameters which
are only a slightly different, reasoning that similar inputs should produce similar
outputs. This exploitation of existing well performing candidate solutions can allow
for small improvements on already good solutions to be made. On the other hand,
drawing parameter sets only from fairly well explored regions of the parameter space
may leave other, possibly higher performing areas where the true, best fitting param-
eters lie completely unexplored. Therefore, a case can also be made for some level of
dispersion during the search, as it will help guard against settling on local-optimum.

How do these methods work? For a taste of how these play out, we’ll briefly
discuss a few commonly used methods: Grid-search, Hill-climbing, Simulated An-
nealing, and the Genetic Algorithm (GA). Importantly, these methods have available
libraries in commonly used programming languages (e.g. Python, C++) and most
are natively supported in NetLogo as well.

A grid-search is a somewhat brute-force method each round of which has three
steps. First, sample a ’grid’ of equidistant points from the parameter space. Second,
evaluate each of those points and find the one with the highest fitness. Third,
shrink the search window of the parameter space to be around the best performer.
This is repeated a number of times equal to the search depth, with the window of
parameters considered shrinking after each depth. While this method casts a fairly

3This text is available for free at http://cs.gmu.edu/∼sean/book/metaheuristics/

15



wide net of search initially, later depths do very little to guard against local-minima.
This method can also be fairly computationally expensive, especially for models
with many parameters. One benefit, however, is that this method of searching has
no stochastic, so using this method will result in the same estimates on the same
data, which may prove desirable as we’ll discuss later.

Hill-climbing is another method which starts in a particular place on the param-
eter space (randomly chosen). Each round a number of nearby points are chosen
and evaluated along with the starting point. The best performer becomes the new
starting point and the process repeats until the search depth is reached or some mea-
sure of convergence is met (e.g. x failures to move in a row). This method can be
sensitive to the starting position chosen and can settle fairly easily on local optima
since it has no way to go back down any hill it starts climbing. Some modifications
include running it multiple times from different starting points and simulated an-
nealing, which some probability to move to worse performing points (down-hill) with
some probability that shrinks over time.

Finally, the genetic algorithm. This interesting method of optimization barrows
from nature the ideas of natural selection and sexual reproduction within populations
of fairly well performing candidate solutions (parameter sets). First, the population
of candidate solutions are evaluated. Next, some low performers are eliminated
from the population and replaced by children, which are produced using pairs of
high performing solutions from the population. These children get some portion of
their parameters (genes) from one parent and the rest from the other (emulating
genetic crossover). Then their parameters have some chance of being randomly
shocked (emulating genetic mutation). This new, resulting population is carried into
the next round, and this process repeats until the search depth is reached or some
convergence criteria is met. The GA is fairly robust and serves as a bread-and-
butter optimization technique for all kinds of complex problems, though it can be
computationally expensive for some problems.

For more details on these and many more search methods, we highly encourage
interested parties in taking a look at Luke [2013].

Which one will perform best on my problem? This is not so easily answered.
There is a long literature comparing search algorithms which on various problems
which aimed to uncover which method of search was superior. Then Wolpert and
Macready [1997]’s No Free Lunch theorem revealed that there is no best way to
search over the space of all possible problems. Ultimately, the ’best way to search’
the parameter space for a particular problem is highly dependent on features of the
problem itself, specifically the fitness landscape. A fitness landscape is the mapping
of all possible parameter combinations to the fitness that parameter set produces.

16



If you can, imagine having a 2 dimensional parameter space (on dimensions X and
Z) and plotting what the fitness of each parameter combination would be (on the Y
axis). You would end up with a surface which likely has high and low points (peaks
and valleys), and slopes of various degrees, hence the name fitness landscape. Some
examples of these can be found below:

[TODO: Add Finess Landscape Pictures Here]
It is rarely, if ever, feasible to view the fitness landscape for our problem of

interest, as that would require exhaustive evaluate all possible combinations of our
parameters. Therefore features of the fitness landscape are often not obvious to the
modeller a priori, so our choice of how to search the space is often limited to our
intuition. For example, a more rugged landscape (one with more peaks) likely will
require more exploration as settling on local optima is much more relevant threat
than if the landscape was single-peaked.

How do I know it’s performing well enough then? While we can’t establish
what specification might be best for fitting our data, we can investigate the level of
performance the specification we’ve chosen is achieving in a controlled environment.
For any choice of search(.) and δ, we can run a Monte-Carlo simulation to see how
accurate the search method is at returning estimating parameters which are known
to us (because we chose them). This feedback will either alleviate concerns that the
search method may be ill equipped to solve the problem, or establish that it is, in
which case we need to modify either our choice of search(.) or δ until a certain level
of performance is achieved. This process is discussed in a later section.

Now with S(.), Agg(.), fit(.), and search(.) established, we should have a well
defined procedure for estimating best fitting parameters θ∗ using the following ex-
pressions from above:

searchθ∈Θ(fit(YMA
, YD), δ) → θ∗ (3)

where
Agg(S(MA, θ,X), r) → YMA

(4)

7 Bootstrapping Confidence Intervals

So far, we’ve discussed finding parameters θ∗ which best fit our data D. We must be
mindful, however, that these estimates are not fit on the data of the entire population,
but rather on a sample of data D drawn from the population. This means, even if
the data generating process in the real world is identical to our model MA, and
even if we’re sure that θ∗ is the argument that truly maximizes our fitness function

17



fit(.), θ∗ may still not be very close to the true parameter values as we only have
the information content in D to learn from. To better understand θ∗ then, we should
establish how sensitive each best fitting parameter θ∗i ∈ θ∗ is to the sampling process.
Put another way, we want to establish a kind of range of possible θ∗s that could
result from repeating the same procedure on different samples. We argue for block-
bootstrapping as one ideally suited method for establishing such ranges for an agent-
based model MA.

7.1 What is Bootstrapping?

Recall our aim is to understand how the sampling process affects our estimate
θ∗. Now if we actually had many separate samples drawn from the population,
{D1, ..., DK}, then the problem could be somewhat trivially solved. We could quite
simply fit all K of the datasets and look at the range of parameter estimates pro-
duced. We could then also establish what the inner 95% of the estimates are for
each parameter to get something akin to confidence intervals for each. Bootstrap-
ping does just this, but instead of using actual separate samples collected from the
population, it constructs simulated samples [D̃1, ..., D̃K ] by resampling data with re-
placement from our dataset D. The argument goes that while we can’t generate new
samples drawn from the population directly, our sample data D was drawn from the
population directly. Given that D is a representation of what we could see and how
frequently we see it, we treat D as what we know about the population and draw
from it instead. Since D was drawn from the population, new resampled datasets
drawn from D should also be examples of dataset which could be drawn from the
population. In our case, we will be using a technique known as Block-bootstrapping
which takes blocks of data instead of individual observations when constructing new
datasets, where a block of data is the smallest unit of data which can be considered
independent from the rest of the data (as discussed above in 4).

7.2 What Can We Learn from Bootstrapping?

7.2.1 Estimate Precision

At a very basic level, confidence intervals tell us something about how precisely a
parameter is estimated using the current model, fitting techniques, and data size and
type. Very narrow confidence intervals on a parameter θ∗i tells us that, to the best of
our knowledge, the parameter estimate is fairly robust to variation between samples.

Note the maximum range a confidence interval can take is constrained by the
range you allow your parameter search to occur over. This means one can artificially

18



achieve fairly narrow confidence intervals by simply constraining a parameter’s search
range to be fairly narrow. In light of this, we recommend that in tandem with
reporting confidence intervals in this way, one should also clearly report the range
over which the parameter was searched.

7.2.2 Parameter Significance

In line with traditional hypothesis testing, we can also test the significance of each
of our parameters. Traditionally in a hypothesis testing framework, we establish
critical values which should contain some percentage of the possible estimates (often
95%) for each parameter in θ∗. We then use this range to establish whether or
not a parameter is significant by observing whether this range contains 0. If 0 is
contained within this range for a two sided test or falls below the critical value for a
one sided test, then we cannot confidently rule out the possibility that the parameter
has no effect on our outcome variable. Hence the phrase, ”We fail to reject the null
hypothesis”, where our null hypothesis for each parameter is that its true value is
equal to 0.

Special care has to be given to interpreting results in the context of structural
models, however, as a parameter may be significant by construction. For example, if
a parameter is only allowed to be from [1,5] for your model to be well defined, then
it is impossible for 0 to fall in the range of best fitting parameters regardless of the
sample data drawn. Conducting a hypothesis test on this parameter will result in
significance, clearly, but this should be no surprise. Agent count as a parameter is a
good example of this. Simply put, a significance test is only relevant for a parameter
to the extent that the parameter is allowed to not be significant.

7.2.3 Indicator of Potential Issues

Lastly, while it is certainly possible that a parameter can have a fairly large confidence
interval if it is very sensitive, this can also act as a signal for a number of estimation
issues. First, this may indicate that the parameter in question is just fairly sensitive.
If a few parameters have fairly large confidence intervals, this could also signal model
identification issues, as your model may have multiple parameter specifications which
achieve the same output. Similarly, a fairly flexible model may over-fit model output,
which could explain fairly large changes in parameter estimates for fairly modest
changes in sample data. Finally, it may be the case that the search process used to
optimize your parameter set search(.) or model output YMA

is fairly noisy, which is
resulting in fairly different estimates. We discuss further the role noise from your

19



model MA and search(.) can play in estimate imprecision along with a diagnostic
test to measure it in section

7.3 How to Bootstrap

7.3.1 1. Construct Datasets D̃k

To construct our confidence intervals, we first will need to construct a number K of
resampled data sets D̃k using our blocks of data. To do this, let’s first recall our
definition of a block from 4. A block b is a set which contains all observations di,t
over time t corresponding to units i within the same group g. That is

bg = {di,t|∀t, i ∈ g} (1)

with our set of all blocks defined above as

B = {bg|∀g ∈ {1, ..., G}} (2)

The new dataset is constructed by simply drawing G blocks from B (which recall is
just D split into independent blocks) uniform randomly with replacement. Formally

D̃k = {b1, ...bG|bm iid∼ U(B)} (11)

We draw G blocks so the new dataset has precisely the same number of blocks
as the original dataset D. Note that drawing with replacement is vital, otherwise
each dataset D̃k would end up identical to D. Replacement allows for grabbing some
blocks multiple times and others not at all. Repeating this process K times, we can
construct our set of new datasets {D̃1, ..., D̃K}.

7.3.2 2. Find Best Fits θ∗k for Each

Next, we’ll have to find best fitting parameters for each of these datasets. To do
so, we can use our search(.) method for finding best fitting parameters θ∗ (given in
equation 3) once on each constructed dataset D̃k ∈ {D̃1, ..., D̃K}. We denote best
fitting parameters found for a particular constructed dataset D̃k as θ∗k . Formally,

searchθ∈Θ(fit(YMA
, YD̃k

), δ) → θ∗k (12)

20



7.3.3 3. Construct the Critical Value(s)

At this point, we should have a set of best fitting parameters θ∗k for each resampled
dataset, which we’ll denote Z = {θ∗1, ...θ∗K}. We should compare this to our best
fitting set of parameters θ∗ which were fit on the original full sample D. For each
parameter in θ∗, which we denote θi∗ , we find its difference with the corresponding
parameter estimate in θ∗k, denoted θi∗k , for each of the parameter sets in Z to compute
errors εik. Formally,

∆i = {εi1, ..., εiK} (13)

where

εik = θi∗ − θi∗k (14)

Importantly, we don’t take absolute values of these differences, as we’ll be con-
structing the confidence intervals using a method which does not rely on the assump-
tion that errors are distributed symmetrically around the mean estimate.

Next, for each parameter i we construct ∆i
Ordered by simply ordering ∆i in as-

cending order. From this set, we can find our critical values Ci for the ith parameter
in our best fitting parameter set θ∗ by finding the α

2
th and 1−α

2
th percentile errors

in ∆i
Ordered and adding them to our best fitting parameter θ∗i . Formally

Ci = [θ∗i + εimth, θ
∗
i + εinth] (15)

where
m = ⌊Kα

2
⌋+ 1 (16)

and

n = ⌈K(1− α

2
)⌉ (17)

⌊.⌋ and ⌈.⌉ refer to the floor and ceiling (nearest integer below and above) respec-
tively. These are useful to handle cases where K α

2
and K(1 − α

2
) are not integers,

and encodes the stance that the confidence interval should error on the side of being
larger if need be. It is best practice, however, to choose a number of resamples for
which m and n are integers.

For example, imagine choosing K = 200 and an α = 0.05. Then the 95% of
the errors computed for θ∗i would be between the 6th and 195th entries in ∆i

Ordered.
Further, the confidence interval for θ∗i could be computed as Ci = [θ∗i+εi6th, θ

∗
i+εi195th].

Also note that while it may appear odd to add the error εi6th for the lower bound

21



of our confidence interval, εi6th should be negative as we did not take the absolute
values of our errors.

For a one-tailed test, a critical value can similarly be established using the fol-
lowing equations.

Ci = θ∗i + εimth (18)

where
m = ⌊Kα⌋+ 1 (19)

Finally, recall that a parameter is considered significant if we reject the null
hypothesis (of θi = 0). This occurs in a two-tailed test if 0 /∈ Ci and in a one-tailed
test when Ci > 0 (for non-negative parameters). For convenience henceforth, we
shall refer to this set of estimated confidence intervals as C.

7.4 Runtime Concerns

Runtime is a serious concern in general, but also particularly so for many ABMs.
Perhaps the greatest detriment to this method is that it relies on many reruns of the
model. For example, above we mentioned that to generate 95% confidence intervals,
one should fit their model 200 additional times on resampled datasets. While this
may not be feasible for all models, there are a number of things that can be done
to improve the feasibility. First, you can always reduce K to K=50 for example,
though this will shrink the true rejection rate as the confidence intervals will be a bit
larger. Second, each of your K fits on resampled data can be run in parallel, as they
are completely independent during the fitting process (Step 2 above). Thus, K=50
could take the form of 5 separate submissions to a computing cluster to execute 10
estimates each. Lastly, we hope that, consistent with Moore’s Law [Moore, 1965], as
we see computational power continue to grow, the computational time required to
perform this process will shrink.

8 Establishing Properties with Monte Carlo Sim-

ulations

The focus of this section is to investigate properties of our model and estimation
strategy. Since we’re dealing with a model MA which can be non-linear, highly
sensitive, and for which noise likely enters the model non-trivially, and similarly
an estimation technique search(δ, .) that itself is stochastic and does not guarantee

22



optimal solutions, one should be cautious in assuming that θ∗ and C are sensible. In
particular, we want to know if we can estimate reasonably accurate, fairly unbiased
estimates of θ∗. We’d also like to know the degree to which imprecision of our
estimate θ∗ (which is demonstrated by our estimated confidence intervals C) reflects
the actual sensitivity of our estimated parameters to sampling variation, and if we
can improve on that imprecision. Monte-Carlo simulations can serve an essential
role in establishing such properties. For the remainder of this section, we discuss
Monte-Carlo simulation in general and then propose candidate simulations which
can be run to address each of the questions introduced above.

8.1 Monte-Carlo Simulation - What and How

Monte-Carlo Simulations are, broadly defined, simple computational models which
are used to establish properties about some distributions (or optimization technique)
when a closed-form solution is not tractable. This often involves repeatedly sampling
the distribution in question in some way.

In our case, we know that search(δ, .) may return different results of θ∗ (see
equation 3), even when fitting the same data, due to the stochastic nature of both
search(.) and our model MA. Thus, we can think about search(.) as returning one
such θ∗ to us from some unknown, underlying distribution over all possible θ∗s. Our
aim in this section is to learn about this distribution. So how can we do this?

At the core of these proposed simulations is the supposition that there is some
true, underlying data-generating process in the real world which our data came from,
DGPData. When we bring our ABM to fit this data, we are taking as given that
our model MA is a reasonable approximation of this DGP and aim to estimate its
parameters.

Recall that our aim is to establish that our estimated parameters θ∗ are reason-
able. Now if we knew the true parameters θ of the real DGP, and if our model truly
was a reasonable approximation of this DGP (see 5), then we could simply estimate
our model a number of times to generate a number of estimates θ∗ and see how close
they are to the known, true θ. While we obviously don’t know θ or the functional
form of DGPData, we can do something quite similar.

Let’s suppose for a moment that our model MA is precisely the true DGP,
DGPData. Next, let’s choose some parameters θ randomly for which our model
is well defined. Given these two, we could then use our model MA and the chosen
parameters θ to generate a simulated dataset by simply feeding in values for X (which
can be chosen randomly if need be) and recording model output Y. Importantly, this
data was generated using parameter values θ which are known, because we chose

23



them. Formally,

MA(θ,X) → D̂ (20)

where values in X which are given exogenously (i.e. are not determined within
the model) are randomly drawn from some distribution.

Now we can estimate the parameters θ∗ on that same model MA using search(.),
treating this simulated data D̂ as real data. Formally, paralleling what we did in
equation 3,

searchθ∈Θ(fit(YMA
, YD̂), δ) → θ∗ (21)

Finally, knowing the true, chosen values of θ and now having estimated parame-
ters θ∗, we can simply compare the two.

Much of the remainder of this section delves into different such comparisons we
can do and how they may prove useful. But first, how do we interpret the results
of this process given we’re treating our model MA (a.k.a DGPModel) as DGPData?
Can they tell us anything about how well we can estimate DGPData when we’re
not even using the DGPData in the simulation? One position an analyst can take is
to make the case that the model MA is in fact a reasonable substitute. In reality,
this is the position we take when we aim to estimate a structural model in the first
place. This argument rest strongly on how solid of a case has been made for model
validity. Another more conservative way to view this exercise is that it is measuring
estimator performance under the ’best case scenario’. If the model cannot perform
reasonably well when fitting the exact same, known DGP as our model DGPModel,
then what hope does it have at recovering the true parameters of a likely somewhat
different, unknown DGP, DGPData? From this view, this is a necessary test to
establish reasonable performance, but is not sufficient.

8.2 About Estimate Accuracy and Bias

Recall our model MA is designed to take some input (potentially over time) X and
some parameters θ, and from that, returns some output Y over time. When we try
to estimate the parameters of our model, though, we are treating our model as a
good approximation of the true DGP and aim to use X and Y to back out what the
underlying parameters θ are. Aiming to solve this Inverse Problem, we introduced
S(.), Agg(.), fit(.) and search(.) functions above in section 6 which are used together
to retrieve our estimate θ∗ of the true parameters θ. It is not clear, however, that the
transformation of inputs X into outputs Y should always correspond to a unique set

24



of parameters θ. If multiple, fairly different parameter sets are all similarly likely to
produce the same output Y given the same inputs X, then observing X and Y alone
will not be sufficient to back out what the underlying parameters θ are. If for all
possible output Y from our model MA given inputs X there is a unique parameter
set θ which is most likely to produce said output given X, then we would say the
model is Identified. This is one of a number of possible reasons why estimates θ∗

could be inaccurate which is not unlikely in the context of ABM estimation.
In some cases, failure to meet this requirement may be fine if the multiple param-

eter sets which can produce the same outputs are reasonably close. In the Schelling
Model for example, an intolerance level of 26% and 27% should produce the same
distribution of output if performed on a lattice, since agents can only have at most
4 neighbors. The distinction between both can be seen as inconsequential though,
since they live close enough in the parameter space that they share both a fairly
similar interpretation and would have similar potential policy implications. Hence,
we use the phrase Reasonably Identified to relax Identification to allow for multiple
parameter sets to correspond to an output Y given inputs X so long as the parameter
sets are reasonably close to one another and similar in interpretation. By establish-
ing a reasonable degree of estimation accuracy, we demonstrate that our model and
estimation technique together are capable of returning estimates θ∗ which are close
to and consistent with θ, sidestepping model identification issues and provides some
basic level of assurance of performance.

A number of accuracy measures can be considered. For the sake of this paper,
we entertain a measure meant to capure the ’average distance’ between estimated
parameters θi∗ and the underlying θi. Formally,

AvgDisti = E(|θi∗ − θi|) (22)

where —.— is the absolute value.
Note that this is calculated separately for each parameter, as we want to see how

accurate our estimate for each parameter is in turn. If this measure is close to zero
for a parameter, than it indicates that we can perfectly recover the initial parameter
θi consistently. This will likely never be the case, but we’re hoping that on average,
we’re not too far off.

While the estimate accuracy measure considered above captures how far we are
from the true parameter value on average, Bias aims to uncover if that distance is
on average more likely to be above or below θi. Formally, this is given as

Biasi = E(θi∗)− θi (23)

25



We say an estimator θi∗ is said to be Unbiased when Biasi = 0. Establishing
that the estimator is unbiased, or at least that bias is small for each parameter in θ8

is important, as it indicates that your estimate tends to be correct on average.

8.3 A Test for Model Accuracy and Bias

8.3.1 1. Randomly Draw θms

For this first Monte-Carlo simulation, we’ll randomly sample M sets of parameters
T = [θ1, ..., θM ], each of which are drawn randomly from the parameter space.
Formally,

T = {θ1, ...θM |θm
iid∼ F (Θ)} (24)

where F (Θ) is some probability distribution over the parameter space Θ. One
very reasonable choice for F might be to draw each parameter in θm uniformly from
the parameter space.

8.3.2 2. Generate Simulated Datasets for each θm

For each parameter set θm in T, we’re generate J corresponding simulated datasets
{ ˆDm,1, ..., ˆDm,J}. Each of these simulated datasets ˆDm,j are sets of possible outcomes
we could observe if MA was the true DGP and θm was the corresponding true,
underlying parameter values. Simulated data can be created using equation 20 from
above. We rewrite this with slightly new notation for our context below as:

MA(θm, X) → ˆDm,j (25)

8.3.3 3. Estimate θ∗m for each Simulated Dataset

Next, for each simulated dataset ˆDm,j, we estimate θ∗m to see if how well we can
back out θm. θ∗m is estimated by simply applying our search(.) method on the
corresponding simulated data ˆDm,j as is shown in equation 21. From this process,
we should have J estimates {θ∗m,1, ...θ

∗
m,J} corresponding to each parameter set θm.

8.3.4 4. Evaluate Estimates and Calculate Biases

Finally, for each parameter i in each parameter set θm in T, we calculate how off the
model is on the average distance and bias for each parameter i using the correspond-
ing set of estimates {θ∗m,1, ...θ

∗
m,J}. Formally,

26



AvgDistim =
1

J

J∑
j=1

|θi∗m,j − θim| (26)

Biasim =
1

J

J∑
j=1

θi∗m,j − θim (27)

By computing bias and average distance for M different regions in the parameter
space (i.e. for different parameters θm), we can see how consistent these measures
are across that space.

8.4 Addressing Simulation Results

To establish reasonable estimate accuracy, we’d need to observe AvgDistim as fairly
small across units of i and m. If this is not the case, then it is possible that your model
is not reasonably identified. Another cause, however, could be that your search(.)
method is fairly noisy. If this is the case, then the following Monte-Carlo simulation
is further motivated to investigate the size of such noise and, importantly, if changes
to search(δ, .) can reduce the noise component.

Similarly, we’d like to see estimation bias as fairly small, otherwise, on average,
we will get estimates which are systematically higher (or lower) than they should be.
In such cases, adjusting the fitness function fit(.) to further prioritize first order fit
may help reduce bias. It may also be the case that, even with a sizable bias, the
parameter estimates retain some interpretability as a bound on the effect size. For
example, if the case being made is on the size of some effect of some parameter Z on
Y, and θ∗Z is negatively biased, then we can say we expect Z has at least a θ∗Z effect
on Y.

8.5 About Sources of Estimate Imprecision

While the confidence intervals C we generate using bootstrapping can be used for
hypothesis testing in the same way one normally would in other contexts, our out-
putted Cs are slightly different in interpretation. In particular, they capture some
additional sources of variation beyond sampling variation. The first source of noise
comes from the stochastic nature of our search(.) operation which, even if it is given
the same problem, may converge on a different solution by virtue of being a partially
random process. Our second source of noise comes from our model MA itself which
likely has some stochastic component. Even though we aggregate the summarized

27



model output across a number of runs, this aggregated model output may still be
fairly noisy. The noise from these two components can cause our search(.) method
to face fairly different summarized output, even when evaluating the same candidate
set of parameters, yielding potentially fairly different fitness evaluations.

This problem can be addressed two-fold however. First, this additional variation
means our confidence intervals C should be larger than if they were only to capture
sampling variation, meaning we are already erring on the side of caution for the sake
of significance testing. Second, we introduce a test to explore the degree to which
variations in the model MA and the search process search(.) play a role in estimate
imprecision, and the degree to which this imprecision can be reduced via changes in
search(.) or Agg(.).

Why does this matter? Recall above in section 7.2 we established that confidence
intervals can signal how precise our parameters are estimated (i.e. how robust our
estimates are to sampling variation) and can be used for hypothesis testing to estab-
lish if our estimate is significant (i.e. we’re fairly confident there’s a non-zero effect
of this parameter). It is possible that search(δ, .) and MA contribute substantially
enough that our confidence intervals C are completely uninformative (as they span
nearly the entirety of each dimension of the parameter space) and our effective re-
jection rate of our null hypothesis become nearly 0. It’s much better to just measure
the size of this noise in isolation and then explore how adjustments to search(.), our
search parameters δ, and our model runs for aggregation r can reduce this noise if
at all.

8.6 Investigating Sources of Estimate Imprecision

To estimate the magnitude of the role noise from non-sampling variation sources
are contributing to the confidence intervals, we propose repeating the bootstrapping
process removing the sample variation component. Specifically, we bootstrap without
using resampled datasets. Instead, we will generate our K estimates on the exact
same dataset D to observe how large our confidence intervals are when there is no
variation in the sample data we’ve provided.

8.6.1 1. Find K Best Fits θ∗k on Same Data

Taking the actual data D, conduct K searches for best fitting parameters θ∗k. This
is done in the same way as in equation 3. Using slightly different notation,

searchθ∈Θ(fit(YMA
, YD), δ) → θ∗k (28)

28



8.6.2 2. Construct the Critical Value(s)

This is done precisely the same way as in section 7.3.3. Recall,

Ci = [θ∗i + εimth, θ
∗
i + εinth] (15)

Each estimated confidence interval Ci demonstrates the size to which the pa-
rameter estimates vary given no such changes in sample data. For these confidence
intervals to retain a similar meaning to their roots in other contexts with determin-
istic optimization techniques, then the range which these confidence intervals span
should be fairly small.

8.7 Addressing Simulation Results

As mentioned above, if search(δ, .) or MA are having a fairly large effect on your
confidence interval estimates C, then some natural adjustments come to mind which
may reduce this noise. For one, if the summarized model output S(MA) is fairly
noisy, you can consider increasing the number of runs r you do and aggregate across.
Similarly, if your search method search(δ, .) is similarly noisy, then some changes
to the search parameters δ might be appropriate. Specifically, it could be that the
method does not search long enough to converge on the result (in which case turning
up the number of search iterations may help). It may also be the case that the
search method does converge, but is susceptible to converging on local optima (in
which case turning up parameters which control the degree of exploration may help).
Making these adjustments and then re-running the test again can demonstrate clearly
the degree to which these changes helped reduce the variation these components
contribute.

9 An Application Example

10 Outlook and Conclusion

29



References

Joshua D. Angrist and Jörn-Steffen Pischke. Mostly Harmless Econometrics: An
Empiricist’s Companion. Princeton University Press, 2008. ISBN 0691120358.

Badi H. Baltagi. Econometric Analysis of Panel Data. Wiley, third edition, 2005.
ISBN 0470014563.

Leonardo Bargigli. Chapter 8 - econometric methods for agent-based models. In
Mauro Gallegati, Antonio Palestrini, and Alberto Russo, editors, Introduction to
Agent-Based Economics, pages 163–189. Academic Press, 2017. ISBN 978-0-12-
803834-5. doi: https://doi.org/10.1016/B978-0-12-803834-5.00011-4. URL https:

//www.sciencedirect.com/science/article/pii/B9780128038345000114.
Russel Davidson and James G. MacKinnon. Bootstrap inference in econometrics.
Wiley-Blackwell: Canadian Journal of Economics, 2002.

Christian Gourieroux and Alain Monfort. Simulation-Based Econometric Methods.
Oxford University Press, 1996.

William H. Greene. Econometric Analysis. Pearson Education, eighth edition, 2017.
ISBN 0-13-446136-3.

Todd Guilfoos and Andreas Duus Pape. Predicting human cooperation in the pris-
oner?s dilemma using case-based decision theory. Theory and Decision, 80(1):1–32,
2016. doi: 10.1007/s11238-015-9495-y.

R.H. Hoyle. Handbook of Structural Equation Modeling. Guilford Publica-
tions, 2012. ISBN 9781462504473. URL https://books.google.com/books?

id=qC4aMfXL1JkC.
Robert E. Lucas. Econometric policy evaluation: A critique. Carnegie-Rochester
Conference Series on Public Policy, 1:19–46, 1976. ISSN 0167-2231. doi: https:
//doi.org/10.1016/S0167-2231(76)80003-6.

Sean Luke. Essentials of Metaheuristics. Lulu, second edition, 2013. Available for
free at http://cs.gmu.edu/∼sean/book/metaheuristics/.

James G. MacKinnon. Bootstrap methods in econometrics. Economic Record, 82
(s1):S2–S18, 2006. doi: https://doi.org/10.1111/j.1475-4932.2006.00328.x.

John H. Miller and Scott E. Page. Complex Adaptive Systems: An Introduction
to Computational Models of Social Life. Princeton University Press, 2007. ISBN
9780691127026.

Gordon E. Moore. Cramming more components onto integrated circuits. Electronics,
38(8), April 1965.

Judea Pearl. Causality. Cambridge University Press, Cambridge, UK, 2 edition,
2009. ISBN 978-0-521-89560-6. doi: 10.1017/CBO9780511803161.

Iza Romanowska, Colin D Wren, and Stefani Crabtree. Agent-Based Modeling for

30

https://www.sciencedirect.com/science/article/pii/B9780128038345000114
https://www.sciencedirect.com/science/article/pii/B9780128038345000114
https://books.google.com/books?id=qC4aMfXL1JkC
https://books.google.com/books?id=qC4aMfXL1JkC


Archaeology: Simulating the Complexity of Societies. The Santa Fe Institute
Press, August 2021. ISBN 1947864254. doi: 10.37911/9781947864382.

H. Sayama. Introduction to the Modeling and Analysis of Complex Systems. Open
SUNY Textbooks. Open Suny Textbooks, 2015. ISBN 9781942341093. URL
https://books.google.com/books?id=Bf9gAQAACAAJ.

Thomas C. Schelling. Dynamic models of segregation†. The Journal of Mathematical
Sociology, 1(2):143–186, 1971. doi: 10.1080/0022250X.1971.9989794.

Karl Schmedders and Kenneth L. Judd. Handbook of Computational Economics,
Volume 3. North-Holland Publishing Co., NLD, 2014. ISBN 978-0-444-52980-0.

Leigh Tesfatsion and Kenneth L. Judd. Handbook of Computational Economics,
Volume 2: Agent-Based Computational Economics (Handbook of Computational
Economics). North-Holland Publishing Co., NLD, 2006. ISBN 0444512535.

R. Tibshirani. Regression shrinkage and selection via the lasso. Journal of the Royal
Statistical Society (Series B), 58:267–288, 1996.

Uri Wilensky and William Rand. An Introduction to Agent-Based Modeling:
Modeling Natural, Social, and Engineered Complex Systems with NetLogo. The
MIT Press, 2015. ISBN 9780262731898. URL http://www.jstor.org/stable/

j.ctt17kk851.
D.H. Wolpert and W.G. Macready. No free lunch theorems for optimization. IEEE
Transactions on Evolutionary Computation, 1(1):67–82, 1997. doi: 10.1109/4235.
585893.

31

https://books.google.com/books?id=Bf9gAQAACAAJ
http://www.jstor.org/stable/j.ctt17kk851
http://www.jstor.org/stable/j.ctt17kk851

	Introduction
	Literature Review
	ABMs as Structural Models
	Comparing ABMs and SEMs
	Interpreting Estimates from (ABMs as) SEMs

	On Data
	Validation
	About Validation
	Model Validation Techniques

	Estimating Best Fitting Parameters
	Defining a Summary Function
	Defining an Aggregation Function
	Defining a Fitness Function
	Specifying an Optimization Technique

	Bootstrapping Confidence Intervals
	What is Bootstrapping?
	What Can We Learn from Bootstrapping?
	Estimate Precision
	Parameter Significance
	Indicator of Potential Issues

	How to Bootstrap
	1. Construct Datasets 
	2. Find Best Fits k* for Each
	3. Construct the Critical Value(s)

	Runtime Concerns

	Establishing Properties with Monte Carlo Simulations
	Monte-Carlo Simulation - What and How
	About Estimate Accuracy and Bias
	A Test for Model Accuracy and Bias
	1. Randomly Draw ms
	2. Generate Simulated Datasets for each m
	3. Estimate m* for each Simulated Dataset
	4. Evaluate Estimates and Calculate Biases

	Addressing Simulation Results
	About Sources of Estimate Imprecision
	Investigating Sources of Estimate Imprecision
	1. Find K Best Fits k* on Same Data
	2. Construct the Critical Value(s)

	Addressing Simulation Results

	An Application Example
	Outlook and Conclusion

