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Abstract

While there is an extensive history of bringing decision theories with learn-
ing to lab data, such models have been plagued with inadequate assumptions
about the information players know before the first round of play. To solve this
problem, I discuss the notion of Simulated Self-Play (SSP), in which agents
play simulated rounds of the game against themselves to develop intuition
about the nature of the game before the first round of play. Although some
existing models of artificial intelligence have utilized self-play to achieve high
performing solutions to some fairly complex problems (e.g. Alpha Zero play-
ing Chess and Go), its exploration as a cognitive parameter when modeling
human behavior has been relatively unexplored. First, I make the case that
SSP improves theoretical coherence by discussing a number of common alter-
native assumptions (uniform / no priors, fitted priors, and burned-in priors),
some of their a priori issues, and how Simulated Self-Play addresses many of
them in a parsimonious way. Next, I evaluate the empirical value of SSP by
implementing a simple learning model using priors formed via SSP and the
alternatives and then compare their performance at predicting out-of-sample
play in variations of the Beauty Contest game. I find that Simulated Self-Play
performs as well or better than all of the aforementioned alternatives.

1 Introduction

As Behavioral Economics has risen to its current status as a legitimate and recognized
subfield within Economics, there is perhaps more interest in our field now than
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ever before in developing robust models of ‘boundedly rational’ decision making.
What these models should look like is still a subject of much debate, with many
of these discussions centered around how such models compare to rational decision
making. There have been many arguments for the use of rational agents in models
as reasonable proxies of long-run decision making. Lucas [1986] famously provides
one such justification for models using rational expectations, arguing that they can
be thought of as

“...steady states of some adaptive process (where) decision rules (have
been) found to work over a range of situations and hence are no longer
revised appreciably as more experience accumulates.”

Taking this interpretation of rational decision making at face value, it seems
to indicate that for every rational strategy, there should be an underlying learning
model from which the strategy emerges. Such boundedly rational models of decision
making, if valid and fairly robust, could also prove vital in understanding when, how,
and how frequently various social and economics systems arrive at different equilibria.
While some papers have aimed to explore to what extent the long-run play by agents
with learning algorithms match Nash play, the primary focus of modern work is on
exploring to what extent play by ‘agents’ using such learning models match or forecast
actual human behavior, including famously Roth and Erev [1995] and Camerer and
Ho [1999].

Experience-Weighted Attraction (EWA) and some simple Reinforcement Learn-
ing (RL) models are very present in modern work, having been proposed by some
as reasonable and fairly robust models of boundedly rational decision making with
learning (Chen and Du [2017]). Case-Based Decision Theory (CBDT) has also been
shown to perform fairly well in a variety of contexts (Gilboa and Schmeidler [1995],
Pape and Kurtz [2013], and Guilfoos and Pape [2015]). For all such learning models,
assumptions must be made about the information initially known before the first
round of play occurs. Rather than exploring how such models compare directly, this
paper focuses on both the implications of assumptions about initial information and
how such assumptions affect model performance at forecasting out-of-sample play.

First, I discuss some ways in which initial beliefs are constructed for such models:
assuming priors over actions are Uniform, treating priors as Free parameters, or
Burning-in initial beliefs (as is done in some agent-based models). I also highlight
some of the fairly undesirable implications of these assumptions. I then introduce
the concept of Simulated Self-Play (SSP) as an alternative method for establishing
initial beliefs, in which each learner plays hypothetical rounds of the game against
themselves a number of times before the first round of actual play starts. Such
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processes are known to be capable of achieving fairly high performing solutions to
some very tough problems in the artificial intelligence world. One such example
is Google’s Alpha Zero, which learned to play Chess at an extremely high level
primarily through repeated self-play. While SSP can solve problems well, it still
remains unclear to what extent SSP is useful for modeling human behavior. There
is some intuition for its value in such contexts, however. When introduced to the
rules of a new game, it is not an uncommon experience to run through some example
scenarios to form a basic understanding about the game and its dynamics. Further
exploration of such examples may reveal strategies which perform well. I argue that
SSP is a useful model of this human process which can be encoded for virtually any
model of learning.

The remainder of this paper is organized as follows. In Section 2, I detail SSP and
three alternative assumptions which guide how to initiate learning models, discussing
some of the undesirable implications each comes with. In Section 3, I discuss some
reasons why SSP may prove desirable over alternatives, as it addresses a number of
their implied problems. In Section 4, I discuss all details of the empirical exercise
conducted in this paper, testing a simple RL model’s ability to forecast out-of-sample
play in variations of the Beauty Contest Game (BCG) under each of these four initial
information assumptions. In Section 5, I share the results of the empirical exercise,
which finds burn-in and SSP to far outperform alternatives, with SSP performing
slightly better. In the final two Sections, I discuss some open questions and potential
future avenues for this work and conclude with the implications of what has been
learned.

2 Initial Information Assumptions

Below I detail Simulated Self-Play (SSP) and a number of common alternatives
can be used to form initial set of beliefs learning agents start with. Agents using
SSP form their initial beliefs by playing a few imaginary rounds of the game against
themselves with the aim of both understanding the mapping of actions to payoffs and
exploring what strategies work well before the first round of play. I also detail three
alternatives, which are by far the most common ways to initialize learning models:
using uniform priors, fitting priors, and burning-in priors. I focus in particular on
some of the problematic implications of these assumptions and how SSP aims to
solve these problems in a parsimonious way, abstracting away from the mechanical
details for now. Each will be revisited in Section 4.3, in which I show how these
methods are encoded in the computational model.
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2.1 No Information / Uniform Priors

Perhaps the most common way to initiate a learning model is to assume the decision-
maker has no information before the first round of play. For the many models which
use a form of attraction (Reinforcement Learning, Experience Weighted Attraction)
or priors (e.g. Bayesian learning), this is encoded as all actions having the same
initial attraction/weight. In other models which do not retain a set of attractions
or priors, like in Case-Based Reasoning, this appears as an agent starting with an
empty memory vector. So what are the problems with this assumption?

First, agents starting with no information have neither any beliefs about what
their opponent will play nor do they start with any information about how actions
map to payoffs. Round one of the game is a complete black box for these agents.
They pick actions without any knowledge of how the game looks, they may observe
what their opponents have picked, and then they wait to see what payoffs come out of
the box. This is particularly a poor assumption when aiming to explain behavior of
lab participants as a great deal of effort goes into making sure the players understand
the game to at least some degree. A logical implication of this assumption is that we
should expect lab participants to behave precisely the same whether or not they are
shown the game matrix with the payoffs that correspond to each set of actions, since
whether or not they are shown this matrix before the game starts, this information
is not encoded into their decision making. Another implication if this assumption
holds is that the behavior in the first round of any two games with the same number
of actions and players is expected to be identical, regardless of what the payoffs are
in the matrix. Yet another fairly unlikely implication is that participants playing a
2x2 game where one action is clearly inferior (i.e. strictly dominated) and potentially
even very harmful to both players will be played with equal probability in expectation
turn one.

Perhaps unsurprisingly, models utilizing this assumption often have a poor ability
to explain early rounds of play. This remains true in the empirical exercise later in
this paper. For situations where both action space is small and number of periods
is very large (e.g. a 100 rounds of a 2x2 game), it may appear the issue uniform
priors imposes is minimal as the influence of poorly fitted early periods on overall
fitness shrinks when the number of rounds of play increases. While it is true that
in such contexts, the effect of the no information / uniform priors assumption may
be small, such findings do not say much about how well the learning model specified
performs as a model of decision-making more generally, accounting for games where
the number of rounds may be small and/or the action set is sufficiently large such
that manual exploration would take a non-trivial amount of time.
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2.2 Fitted Priors

Another common way to initiate a learning model is to assume that all decision
makers enter with the same set of initial attractions/priors about actions before the
first round of play. Rather than deriving these attractions from the game matrix
itself, these initial attractions are typically treated each as a free parameter to fit in
the model. In this way, these can be thought of as exogenously given attractions. So
what are the problems with this assumption?

First off, such a method is not often feasible unless dealing with very small action
sets because each action attraction is typically treated as its own free parameter. One
can try to reduce the number of free parameters introduced by binning the attractions
in nearby actions to have the same initial level (as was done in Chen and Du [2017]),
but this only works games with actions that are well ordered. Second, such methods
do not have a clearly tidy analogue in learning models which do not carry a set of
attractions through periods like Case-Based Reasoning (though something similar
was tried in Guilfoos and Pape [2015]). Finally, and perhaps most importantly, it is
unclear to what degree such fitted parameters tell us something about behavior more
generally. These parameters are not derived from features of the games themselves
but rather are exogenously given. This means if we look at a slightly different version
of the same game, where perhaps the payoffs in the matrix are slightly adjusted but
all else remains the same, it is unclear to what extent, if at all, such parameters can
help inform how agents will act in the new context. Taking this one step further, if
aiming use this model to behavior in a similar but distinct game where the action
sets between the games are not directly analogous, it is unclear how these fitted
initial attractions can be used to inform us in this new context if at all. So, broadly,
the extent to which fitting priors can tell us something about behavior which is
generalizable or externally valid is unclear. As will be seen in the empirical exercise
later, the case that such parameters tell us something useful in different versions of
the game where the action sets are precisely the same is suspect.

2.3 Burned-In Priors

Burning-in a model is a term often used in agent-based modeling circles. To burn-in
a model which would run for R rounds, you simply run it b+R rounds and then drop
the first T rounds of play. When comparing model output to data, what is actually
being compared is model output from rounds b+1, ... b+R and data from rounds
1,...,R. In general, this allows the modeler to initiate their model starting in a sort of
mid-run or long-run state. In the context of models with learning agents specifically,
this can be thought of as agents entering with some experience playing this game.
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Interestingly, this allows agents to enter with different initial attractions/priors, since
they will accrue different experiences during these burn-in ’practice’ rounds with each
other. When bringing such a model to data, the number of rounds used to burn-in the
model can be treated as a free parameter which is denoted b. In many ways, burn-in
solves the problems of the uniform priors / no information assumption in a much
more parsimonious way than fitting attractions directly. Unlike the fitted individual
attractions, the fitted burn-in parameter also retains interpretability across contexts,
as it essentially is a parameter which corresponds the amount of experiences the
players have playing the game with each other. When changes are made to the
action set or the payoffs in the game, such changes can easily be accounted for in
new predictions. So what then is the problems with this assumption?

The primary problem arises from the fact that a burn-in requires agents to play
each other for b rounds. First, this means that all of their attractions, while they
may differ, must correspond to the same set of events. For example, if players play
a two player prisoner’s dilemma and form initial beliefs using a burn-in, it will not
be the case that one player believes repeated Coorperation is likely while the other
believes that all players will probably just play Defect, as these beliefs correspond
to different events. So the first implication of a burn-in is that while agents can
enter with different priors, the set of possible combinations of priors agents can enter
with are constrained only to the set of priors which correspond to shared experiences.
Taking a step back, this doesn’t make much sense when, particularly in a lab setting,
these players have not yet played this game with each other. A slightly different
though very related problem arises from the fact that, since these agents are playing
rounds against each other before the first round of play, agents can quite literally see
what their opponents have and how their opponent plays the game. This is a fairly
strong and unrealistic assumption about what players, particularly in a lab setting,
should know about their opponents before play starts. What is desired is a sort of
burn-in where agents do not directly learn about their opponents before the first
round of play and where the attractions/priors they enter with are not constrained
to the set of events which must be shared between all agents. As we is shown in the
next couple sections, Simulated Self-Play provides just that.

2.4 Priors from Simulated Self-Play

Simulated Self-Play (SSP) is very similar to a burn-in in many ways. Just like
a burn-in, b rounds of ’pre-period’ play are executed. However, unlike a burn-
in, each agent using SSP will play these b rounds against themselves as if they
are all the players in the game simultaneously. This can be thought of as each
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agent, after seeing the rules of the game, working through a number of example
cases of the game in their head before choosing an action on the first turn. As
b increases, agents gain a more sophisticated understanding both of the mapping
of actions to payoffs and of what strategies perform well by continually trying to
improve on their previous strategies by playing more rounds against themselves.
Importantly, these repeated games against oneself do not directly incorporate any
information from actual play against their opponents. Intuitively, this means agents
play strategies that worked well against themselves in their mental self-play games
in the first round of play and then adjust their strategies over rounds of play with
other players based on the experiences they have with their opponents. This also
means agents can enter with beliefs consistent with different events. Running with
the prisoner’s dilemma example, this means that one agent thinking about the game
can come to the conclusion that repeated cooperation is a real possibility and enters
the game optimistically while another player could enter the game having come to
the conclusion that always playing D seems to work pretty well.

3 An A Priori Case for Simulated Self-Play

Above I discussed a number of common assumptions about the initial information
decision theories with learning are instantiated with. I also highlighted a number of
issues presented with each, and concluded with the proposed alternative of Simulated
Self-Play. So how does Simulated Self-Play address the issues present when assuming
the alternatives?

As discussed in Section 2.1, assuming no information is known initially has a
number of problematic implications, perhaps the most troubling of which is complete
indifference to actions in every game, even when actions are strictly dominated and
harmful to everyone. I also mentioned in Section 2.2 that what directly fitted action
attractions can tell us about similar but distinct games is unclear, and sometimes
such fitted parameters are simply incompatible (for example, when a small, trivial
action is added to the action space). Unlike in the cases of Uniform or Fitted priors,
SSP derives attractions using repeated play of the game itself. This means that
the predictions of initial attractions using parameter b account for differences in the
games presented to the agents and retains interpretability across games which can
vary in action set size, payoffs, player count, etc. Further, SSP solves this problem
in a much more parsimonious way than fitting priors directly. While moving from
uniform priors to SSP introduces just one parameter b, fitted priors requires adding
a number of parameters which grows proportionally with the size of the action set.

In Section 2.3, I discuss how burning-in priors also solves many of the problems
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that arise when using Uniform or Fitted priors. However, it introduces a new prob-
lem of giving players experiences with each other that we know, based on how the
experiment is set up in the laboratory, they should not have. Even if we accept this
fact, taking burn-in as an imperfect but sufficient proxy, we know that the set of
priors which agents can enter with is heavily biased, since agents cannot enter with
priors which are not compatible to the same set of mutual events. We also rule out
any dynamics that might emerge as a result of having the ’wrong idea’ about your
opponent in early periods of play. By allowing agents to use SSP over burning-in
priors, agents can form priors of various sophistication levels (governed by b) with-
out playing each other directly and without being constrained to a subset of priors
agents could actually (and reasonably may) enter the game with. And again, this
comes without any additional parameters as both burn-in and SSP utilize the same
parameter b to govern rounds of pre-play.

4 An Empirical Test of Simulated Self-Play

So far I have discussed why simulated self-play may be preferred a priori for its
desirable properties and theoretical coherence. However, its validity as an assumption
about human behavior remains to be seen. To address this, I propose an empirical
exercise in which versions of a computational model where agents leverage a very
simple reinforcement learning algorithm compete to forecast out-of-sample lab play,
with each version of the model distinguished only by the assumed initial information
agents are given. This exercise is performed using lab data collected on groups of
various sizes playing versions of the Beauty Contest Game (BCG). For the remainder
of the section, I break down each of the components of the exercise (the game, the
data, the learning model, and the evaluation criteria) in turn.

4.1 The Beauty Contest Game

The first discussion of the Beauty Contest Game is often attributed to [Keynes,
1936], in which he describes a hypothetical contest in which, from a large number
of photographs, contestants are asked to choose the most attractive candidates. All
players who selected the most popular photos would then be eligible to receive a prize.
This served as an analogy to stock market behavior, illustrating how the desirability
of a stock could be highly influenced by ones beliefs about how much others value it.
This game was later popularized by various experiments which aimed to explore the
role of beliefs about others in boundedly rational behavior Nagel [1995], Duffy and
Nagel [2012], Grosskopf and Nagel [2008].
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For better or worse, modern implementations of the game are not quite as Keynes
imagined then (though programming on NPR came close, asking listeners to select
from a small number of cute animal videos). Instead, each player submits a number
ai from the interval [0, 100], which defines the action set Θ. Once the submitted
choices A = {a1, ..., an} are collected, the target number is computed in the following
way:

τ = ρ ∗ Agg(A) (1)

where ρ ∈ (0,1) (0.5 in our case) and Agg(.) is some function which aggregates
across the numbers chosen. This is commonly the mean choice, but taking the median
and max of the choices has also been tried a number of times, including in the data
I’ll be using from Duffy and Nagel [2012].

The winner(s) are the player(s) who chose the number, ai,t, which is (are) closest
to the target τ , with tied players splitting the prize equally. Thus, players can
maximize their payoff by choosing a number ai closest to the target number, which
again, is some fraction of the aggregate.

This game has a number of curious properties which make it fairly desirable for
our context. First, the important role that learning plays in the context of this
problem is evident. The stage game has a unique weakly dominant Nash equilibrium
(NE) which, for all of the aggregation functions Agg(.) and ρ mentioned above, is for
all players to choose the minimum choice 0 when there are greater than two players
playing. Intuitively, there cannot be a symmetric NE greater than the minimum
since any player splitting the prize with others would benefit from reducing their
choice slightly, undercutting the choices of the group and gaining the remainder of
the prize for themselves. Despite having a unique weakly dominant NE, in practice
players often choose higher choices initially and approach the NE after a number of
rounds. The speed of this approach to NE can not only on features of the game,
but also on very early rounds of play. This has made it the subject of a number of
papers investigating learning, boundedly rational response, and the apparent path
dependence of play in such games Nagel [1995], Duffy and Nagel [2012], Grosskopf
and Nagel [2008]. Second, this is one of the few canonical games in economics with
an action set which is non-trivially large. Typically, players are asked to choose a
number from the interval [0,100], which means (if the action set is discretized at the
level of integers) there are 101 options for players to choose from each round. With
an action set of this size, initial beliefs about the performance of these actions plays
an important role, as manual exploration of the entire action set is not feasible in ten
or less rounds of play. This makes this problem ideal for testing assumptions about
initial beliefs / information.
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4.2 Data

As mentioned above, I utilize lab data introduced in Duffy and Nagel [2012] which
contains the per-round choices of participants playing variations of the repeated
BCG. The dataset contains 868 data points in total, with trials varying in number
of participants (N), number of rounds (Rounds), and how the choices are aggregated
(Agg(.)) to produce the target number τt each round of play. These trials are
summarized in the table below:

Session p N Agg(.) Rounds

1 0.5 15 Median 4
2 0.5 15 Median 4
3 0.5 13 Median 4
4 0.5 13 Median 10
5 0.5 16 Mean 4
6 0.5 14 Mean 4
7 0.5 15 Mean 4
8 0.5 14 Mean 10
9 0.5 15 Max 4
10 0.5 15 Max 4
11 0.5 15 Max 4
12 0.5 15 Max 10

Table 1: Lab Data from Duffy and Nagel [2012]

These variations in the game are an important feature of this data, as it allow
us to test the degree to which our initial information assumptions tell us something
about behavior more generally. As we will see later in the evaluation criteria, we will
break this dataset into two parts. Approximately 2

3
of the data is used to train our

learning models and the last 1
3
is used to evaluate how well our models perform at

forecasting human behavior in very similar but importantly distinct versions of the
game.

4.3 Agent Learning

4.3.1 The Simple Reinforcement Learning Model

For the purposes of this paper, which focuses on the assumptions made about initial
information in particular, I elected to use a learning algorithm which is simple, uses
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very few parameters, and already has some proven ability to explain behavior in lab
settings. Roth and Erev [1995] propose a simple 1-parameter reinforcement learning
model which they demonstrate outperforms NE in predicting play in 12 different 2x2
games. This work is extended in Erev and Roth [1998], adding two such behavioral
parameters. The agents in my model use a simplified version of this reinforcement
learning algorithm which, excluding the parameters required to establish the initial
priors of the agents, uses only one parameter. I detail this simple learning algorithm
below.
Initialization:

Each agent starts with a vector Γ of ‘attractions’ to each action. Since in this
setting there are 101 actions to choose from (integers from [0,100]), agents must start
with a set of 101 attractions.

Γi,t=−1 = {γ0,i,t=−1, ..., γ100,i,t=−1} (2)

The initial value of these attractions (which can be thought of similarly as priors in
a Bayesian framework) are determined by our assumptions about initial information.
In Erev and Roth [1998], this value is determined by a parameter S, which represents
the strength of agents’ priors. The particular encoding we will use to determine Γ
depends on which assumptions about initial information we are using. Each encoding
of these assumptions will be detailed in turn in the subsections that follow. For now,
take the initial Γi,t=−1 as given.
Round Behavior:

Each round, each agent in a simulated trial will choose an action ai,t ∈ {0, ..., 100}
randomly, weighted by the action’s attraction level. The likelihood agent i will
choose a particular action ai,t = x at time t is directly proportional to its size in the
attraction set. Formally:

Prob(ai,t = x) =

{
γx,i,t∑100
j=0 γj,i,t

if x ∈ {0, ..., 100}

0 otherwise
(3)

Once actions are chosen, the actions are fed into the simulated game, which takes
agent actions each period {a1,t, ..., aN,t} are arguments, computes the target level
τ , then returns payoffs to the agents {π1,t, ..., πN,t}. At the end of the round, each
agent uses the experience of playing the round {a1,t, π1,t} to update their attractions
to each action for next round in the following way:
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γi,t+1(â) =

{
(1−R) ∗ γx,i,t + πi,t if x = ai,t

(1−R) ∗ γx,i,t otherwise
(4)

In words, the influence of all past attractions are reduced using the second free
parameter R, Recency Bias. Then, the attraction associated with the chosen action
this period γai,t is adjusted additively by the payoff received this period πi,t.

4.3.2 Encoding Uniform / No Priors

The simplest and often most common assumption in learning models is to assume
no information. In many models, a logical jump is made that, in the face of this
ambiguity, agents should be equally willing to select any action. To implement this
in the learning model above, we simply set each initial attraction equal to some value
S. Formally:

Γi,t=−1 = {γ0,i,t=−1 = S, ..., γ100,i,t=−1 = S} (5)

This is how initial priors are set up in Erev and Roth [1998], with the interpreta-
tion of S being the strength of initial priors. If S is very large, it will typically take
more experiences to move away from uniform priors. Importantly, as seen above, all
action attractions are assigned the same value S to start. Also note, this assumption
adds just 1 parameter to the model.

4.3.3 Encoding Fitted Priors

Another alternative discussed above is to treat the initial attractions agents have to
particular actions as free parameters to fit. Importantly, the initial set of attractions
for all agents are identical, just like in the uniform priors case.

Recall in the base learning model, there are 101 attractions agents start with.
One thought might be to fit all 101 as separate parameters, but this seems to be
almost the definition of overfitting and would quite certainly yield poor results out
of sample. Fitting this many parameters well could also prove immensely computa-
tionally expensive as the parameter space is massive, decreasing the odds of finding
a global optimum in any reasonable amount of time. In the spirit of trying to give
this assumption the best chance to succeed, I instead bin action attractions and fit
those bins, as was done in Chen and Du [2017]. Initial attractions are broken into
five bins of approximately 20 actions each (the first bin contains the one extra initial
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attraction), each of which get a free parameter S1, ..., S5, which correspond to the
starting values of the attractions in their bin. Formally:

Γi,t=−1 = {γ0,i,t=−1 = S1, ..., γ20,i,t=−1 = S1

γ21,i,t=−1 = S2, ..., γ40,i,t=−1 = S2,

γ41,i,t=−1 = S3, ..., γ60,i,t=−1 = S3,

γ61,i,t=−1 = S4, ..., γ80,i,t=−1 = S4,

γ81,i,t=−1 = S5, ..., γ100,i,t=−1 = S5}

(6)

This assumption adds 5 parameters to our model S1, .., S5, one for each bin.

4.3.4 Encoding Burned-In Priors

To implement assumed burned-in priors in our context, we simply initiate the model
the same exact way as we do when there are no priors. However, we add one ad-
ditional step; we have the agents play the repeated game b times, and take the
attractions after those b runs to use as our initial attractions for agents in the actual
runs we want to compare to data. Again, this is meant to simulate the fact that
these agents have prior experiences or prior knowledge about how the game might
work. If we denote the process of running the model r periods as ABM(θ, r), then
the initial attractions for burned-in agents can be given as:

ABM(θ, r = b ∗Rounds) → Γi,t=−1 (7)

with
Γ̂i,t=−1 = {γ0,i,t=−1 = S, ..., γ100,i,t=−1 = S} (8)

This allows for agents to start with different initial attractions (though these
the space of initial attractions possible for agents is constrained to those which are
derived from the same mutual experiences). Also note that this adds two parameters
to the model: S and b. S, as before, represents the strength of initial priors. b on the
other hand represents the number of burn-in rounds the agents go through before
play begins.

4.3.5 Encoding Priors using Simulated Self-Play

Very similar to burned-in priors, we once again derive our initial action attractions
from rounds of past play, which themselves are initiated with uniform priors. The
one distinction, however, is that these runs are computed for each agent separately,
playing a special version of the game where instead of playing the other agents, they
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play the game against themselves as if they are all players at once, and they accrue
all such experiences. Importantly, as noted before, this allows agents to enter with
different priors that, unlike burned-in priors, do not need to conform to the same
mutual experiences. If we denote this special version of the simulation where agents
play themselves ˜ABMi(θ, r), then the initial attractions for agents using simulated
self play is given by:

˜ABMi(θ, r = b ∗Rounds) → Γi,t=−1 (9)

where once again

Γ̂i,t=−1 = {γ0,i,t=−1 = S, ..., γ100,i,t=−1 = S} (8)

Again, this model adds two parameters S and b, where S is the strength of priors
and b is the number of rounds of self-play agents engage in to form their initial
beliefs.

4.4 Evaluation Criteria

First, I divide up the dataset (as mentioned earlier in Section 4.2) into training and
evaluation criteria in the following way, with white cells in the training dataset and
gray in the evaluation dataset.

This loop of behavior is executed once for each agent in each round of play within
a given run, mirroring the precise problems faced by agents in the lab experiment.
For example, in session 5, sixteen participants play four rounds of the BCG using
a mean aggregation function. In my simulation, sixteen simulated agents play four
rounds of the BCG with a mean aggregation function, making decisions each round as
detailed above, initialized with one of the four initial information assumptions. This
digital mirroring ensures the circumstances simulated agents face are meaningfully
comparable to the circumstances that were faced by the participants in the lab.

In principle, the evaluation set serves as something to compare our model predic-
tions to which has not been trained on, but which are in many ways similar (though
distinct) from the sessions contained in the training data. This is important as it
helps guard against over-fitting issues. The intuition goes, if a model specification is
very flexible (e.g. it has 10,000 parameters), it likely can achieve very low levels of
loss when compared to the training data. However, that over-fitted model likely will
not generalize well when trying to explain data which it has not been able to train
on.

Each of these four models have different sets of parameters which are listed in
the table below:
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Session p N Agg(.) Rounds

1 0.5 15 Median 4
2 0.5 15 Median 4
3 0.5 13 Median 4
4 0.5 13 Median 10
5 0.5 16 Mean 4
6 0.5 14 Mean 4
7 0.5 15 Mean 4
8 0.5 14 Mean 10
9 0.5 15 Max 4
10 0.5 15 Max 4
11 0.5 15 Max 4
12 0.5 15 Max 10

Table 2: Training and Evaluation Data

Model Parameters
Uniform Attractions R, S
Fitted Attractions R, S1, S2, S3, S4, S5

Burned-In Attractions R, S, b
SSP Attractions R, S, b

Table 3: Best-fitted parameters for each model.

A loss function must be specified both to find best-fitting parameters for each
version of the learning model when applied to training data and to evaluate how
well each model with best-fitted parameters emulates play in the evaluation set.
Following the paradigm of Simulated Method of Moments, I use a fitness function
which aims to capture the weighted difference in the first two moments of choices
between agents in the simulation and players in the lab. This is given as follows:

Loss(ABM(θ, r)) =
∑
s∈D

Rounds∑
t=0

[
(ys,t − ŷs,t(θ, r))

2+

α(V art(ys,t)− V art(ŷs,t(θ, r)))
2
] (10)

where s is the session number, D is either training or evaluation data, yi,s,t is an
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observed choice in D, ˆyi,s,t(θ, r) a choice from model output, and α is the relative
weight given to the second moment in the loss function. I set α = 0.05. Note since
ŷs,t(θ, r) and V art(ŷs,t(θ, r)) are from a computational model which is stochastic and
could be fairly path dependent, these values must be computed over a number of
model runs. Both moments of model output take an argument r which corresponds to
the number of model runs used to compute the expected outcomes of these moments.

As is often the case with computational models, the best-fitting parameters for
each model (i.e. the parameters which minimize loss when compared to the training
set) requires the use of some algorithmic searching of the parameter space. I utilize
a method known as behavioral search. While such an algorithm does not guarantee
the globally optimal solution, there are no alternatives which should perform better
a priori and all models are equally subjected to this form of optimization. Taking
these four fitted models, a comparison of their ability to forecast the out-of-sample
behavior in our evaluation data can now be made.

5 Results

The parameters which best fit the training data associated with each model can be
found in the table below.

Model R S S1 S2 S3 S4 S5 b
Uniform Attractions 0.99 0.01 - - - - - -
Fitted Attractions 0.822 - 0.01 55.468 51.603 10.794 5.254 -
Burned-In Attractions 0.658 38.040 - - - - - 4
SSP Attractions 0.732 68.068 - - - - - 4

Table 4: Fitted model parameters on training data

Upon quick inspection, there are a few things worth noting. First, we may no-
tice that the models using burned-in and SSP attractions have fairly similar fitted
parameter values, with both utilizing 4 rounds of pre-play and fairly close levels of
recency bias. The higher strength of priors S for SSP may also explained in part by
the fact that SSP players play the game from all perspectives during the pre-play
rounds, incorporating how well actions perform from all perspectives of the round. In
contrast, burn-in players only incorporate experiences from their own actions. Since
SSP players incorporate more information per round of pre-play, a higher S may be
required to retain a similar level of willingness to explore new strategies post pre-play
rounds.
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Next, we may notice that the fitted attractions model seems to put much more
initial attraction into S2 and S3, which correspond to actions {21, ..., 60} while placing
very little weight at the extremes. This seems fairly reasonable and is in-line with
what is often seen in such games.

Finally, it seems as though in the uniform priors case, S is nearly minimized and R
is nearly maximized. A high R corresponds to rapid reduction in the influence of old
experiences on current attraction to actions. A small S indicates that the belief that
all actions perform equally well is very weak. It seems the best the uniform priors
version of the model can do to replicate the behavior of agents in the training set is
to choose effectively uniform randomly until some payoff is earned, after which it will
continue to pick that action with near certainty. Once that action ceases to return a
positive payoff, it will rapidly return to drawing actions in a nearly uniform random
manner once again until one happens to return a positive payoff again. While there
is some sense to this solution, it seems quite erratic. As we will see later, this model
performs fairly poorly at forecasting play in the evaluation set.

Next, we see the results of the forecasts of each model, reporting both the loss and
the relative size of loss when compared to the model using SSP. This is summarized
both in the table and plot below.

Model Loss Loss / SPP Loss
Uniform Attractions 42.757 2.392
Fitted Attractions 33.347 1.866
Burned-In Attractions 18.814 1.05
SSP Attractions 17.871 1

Table 5: Fitted model loss on evaluation data

First, it can be seen that SSP and Burn-in perform similarly well and outperform
the other two alternatives, with Self-play performing slightly better in this instance,
though it cannot be said if this difference in performance is statistically significant.
Additionally, the learning model utilizing Uniform priors performs the worst by a
reasonable margin, with more than twice the amount of loss in its forecast over SSP
and burn-in. Given the BCG has 101 actions to choose from, entering the game
with no prior information (including no sense of what the payoffs of the game even
are) to guide decision making means the only way such agents can learn is through
manual exploration of the massive action set. Given real-world participants play
this game over either 4 or 10 rounds in a session, it seems unlikely that manual
exploration alone can fully explain player behavior, and that’s precisely what the
poor performance of this model is telling us. Fitting priors directly also appears to
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Figure 1: Best-fitted model loss in forecast of evaluation set play relative to SSP
performance

perform worse than both burn-in and SSP, though better than Uniform priors. This
poor performance may come as a surprise, but it may be the case that in this context
where the evaluation set contains slightly different versions of the game, these initial
attraction bins fitted on the training data are not as externally valid as one might
hope for.

6 Discussion

This project was initially motivated by my own experience trying to understand why
various decision theories with learning I had encountered seemed to under perform
when trying to explain play in games with large action sets. Within the economics
literature, the number of papers that bring reinforcement learning models to lab data
with the goal of trying to understand decision making remains fairly small, though
interest has been growing. Very few of those papers, however, apply such models to
non-2x2 games. To test the validity of such models, exploration of their performance
in less represented contexts needed, including games with non-trivially large action
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sets. This paper, which explores how well variations of a simple reinforcement learn-
ing model can forecast out-of-sample play in the BCG as is just one small step in
that direction.

These results also raise some additional questions about how to think about
the role our assumptions play in constraining our models. One of the primary a
priori arguments I make for SSP over burn-in is based on the fact that burn-in
constrains the set of possible initial attractions agents can enter the game with,
which in turn may be creating a sort of complex bias in outcomes we might expect
from the model. Uniform attractions and Fitted attractions are likely even more
constraining, as making these assumptions requires all agents to have precisely the
same initial attractions. In many ways, the empirical exercise presented above can
be thought of as a comparison of how well the same simple learning model performs
when the initial conditions of that model are constrained in different ways, governed
by various parameters. While a small difference in performance can be seen between
the learning model using burn-in and SSP, it is not yet clear that the application of
these assumptions about initial information to learning models used in another game
should produce similar differences in performance. Intuitively, given SSP allows all
n agents to enter with attractions which are consistent with their own set of events
while burn-in requires all n agents to have attractions consistent with only one event,
I expect the difference in possible initial conditions of the model to grow with player
count or with the size of the action set, though there is no guarantee that these
additional events lost produce outcomes which are qualitatively different. Further
exploration of the effective difference these assumptions make in new contexts is
needed.

Finally, it is important to note that the advantages of SSP do come at a compu-
tational cost. While burn-in requires running the model once for b rounds, the SSP
requires running the model n times for b rounds, where n is agent count. SSP as
described above could become less feasible computationally if dealing with models
that have, for example, thousands of agents. However, an interesting solution po-
tentially worth exploring in the future could be to generate initial attractions using
SSP for, say 50 agents, and then initiate each of these thousands of agent with initial
attractions drawn randomly with replacement from this set of 50. While this would
constrain the set of possible combinations of initial beliefs agents can start with, it
does less so than doing a burning-in the model.
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7 Conclusion

Above I have presented a case for SSP as a reasonable way to approximate the infor-
mation players start games with. I provide a number of reasons why we might prefer
to use SSP a priori, as it solves a number of issues created when using alternative
assumptions in a fairly parsimonious way. I also provide empirical evidence that for
a simple learning model, using SSP to construct in initial beliefs agents enter the
game with improves the model’s ability to emulate out-of-sample play. I hope that
this contribution inspires other analysts to consider the role that SSP could play
as in their models of behavior and to demonstrate the importance of pushing the
boundaries of modeling assumptions more generally.
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