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Abstract

Elinor Ostrom identified eight design principles for the management of common-

pool resources across hundreds of case studies. We develop a novel computational

model in which learning agents intentionally explore the action space in a common

resource game under different policy regimes to test the conditions in which one of

Ostrom’s design principles, graduated sanctions, emerges. We characterize the long-

run policies that emerge top-down via a computational social planner and bottom-up

via democracy, modelled as an endogenous self-governance process.

First, we find that graduated sanctions emerge top-down via a social planner who

utilizes a fine-based policy without redistribution, but only when agents utilize similar-

ity in their decision-making process. Next, we find that, when policy makers are able

to redistribute fines, draconian style sanctions emerge. We also demonstrate that im-

plementing the theoretical solution for rational agents who fully understand the game

can forgo substantial potential gains in social welfare. Finally, we observe that, when

agents participate in “democracy” (a bottom-up policy selection mechanism via voting

for representatives) they are able to solve the commons problem fairly well, though we

do not observe graduated sanction emerge in this context.
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1 Introduction

In Elinor Ostrom’s seminal work (Ostrom, 1990), she compiled hundreds of case studies of

communities that successfully managed common-pool resources (CPRs). Across these com-

munities, which varied greatly in size, geography, culture, and resources, she identified a

number of features of governance structure that were frequently held in common. These fea-

tures are referred to as ‘Ostrom’s design principles.’ These principles of long-enduring CPRs

appeared even in communities in relative isolation from one another, indicating these de-

sign principles were (in some cases) discovered independently. Ostrom points out traditional

schools of economic thought do not appear prepared to explain this empirical regularity in

how common resources are managed in the world (Ostrom, 1990). This work forms the basis

of a collective action theory where individuals form institutions through self-organization.

Ostrom’s Institutional Analysis and Development (IAD) framework posits the design

principles can emerge through a deliberative process by agents set in an environment who

devise their own policy solutions. Further, she suggests this complex process cannot be

modeled as a simple game as one might see in a game theoretic model, instead suggesting

that evolutionary agent-based models may be well suited to capture some of this adaptive

process (Ostrom, 2000; Janssen and Ostrom, 2006; Wilson et al., 2013). If these principles

tend to improve management of CPRs, then it’s possible to see the emergence of these

principles in an appropriately-defined, adaptive/evolutionary agent-based model in which

agents interact with a CPR. We develop a computational model in which learning agents

experiment with strategies in a public goods game and participate in forming bottom-up

policy in an attempt to solve the commons problem. We focus on the the emergence of the

principle of graduated sanctions, to see whether and how it might emerge in this context.

We approach the problem iteratively by building out our model in 3 distinct phases and

observing model behavior during each. 1 In the Private Provision Model, learning agents

1The code for this project is publicly available and can be found at https://github.com/chriszosh1/
EvolvingSustainableInstitutions
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play the CPR game facing no policy. In the Social Planner Model, the learning agents play

the same game facing exogenously given policy via a benevolent social planner whom is

experimenting with policies to improve social welfare. Finally in the Democracy Model, the

learning agents play the game once more, but now participate in forming the policy they’ll

face via voting in a democracy.

We find graduated sanctions emerge when a top-down social planner utilizes fines with-

out redistribution, but only when agents utilize similarity in their decision making. When

policy makers redistribute fines however, draconian style sanctions emerge instead as a more

effective method of maximizing social welfare. We also find that when agents participate in

a bottom-up policy selection via voting, they are able to solve the commons problem, though

sub-optimally through excessive fining. We also delve deeper into why both the theoretical

solution and democracy achieve sub-optimal levels of social welfare.

An overview of the structure of the remaining paper is given as follows. In Section 2 we

detail related works and where our contribution fits in. In Section 3, we describe the under-

lying theoretical model and describe the shape of the policy solution found in the theoretical

model which leverages game theory alone. We also discuss graduated sanctions and how we

characterize if they’ve emerged or not. In Section 4 we introduce our computational model

and look at the simplest version (the Private Provision Model) which is absent of policy. We

demonstrate agent behavior docks closely to (produces results fairly in line with) theoretical

predictions. In Section 5 we introduce an agentization of a social planner (the Social Planner

Model) that has flexibility in choosing a policy to solve the social dilemma. We both interpret

the shape of the emergent policy under a number of conditions and discuss how the policy

solutions the planner finds differs from theory. In all such cases, the social planner’s policies

are able to correct behavior to socially optimal levels. In Section 6, we replace the social

planner with a form of democracy (the Democracy Model) where agents vote directly for

representatives who have proposed their own policy solutions. We interpret the unexpected

shape of the emergent policy and demonstrate that democracy can solve the social dilemma,
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though not socially optimally. In Section 7 we summarize and compare our results from

across our subsections, characterizing what features seem pivotal in altering which types of

policy solutions appear. Finally in Section 8, we conclude with the implications and propose

an agenda for future work.

2 Related Literature

Our paper rests in the literature on coordination problems and, more narrowly, the formation

and utilization of institutions to solve the tragedy of the commons.

A great deal of work as been done on the role sanctioning can play in addressing the

commons problem. It’s well established that punishment serves not only as a powerful

mitigator of unwanted behavior directly, but also as a signal of social norms and expectations

of group behavior (Ostrom et al., 1992; Fehr and Gächter, 2000; Jules et al., 2020). We

also know punishment of unwanted behavior can occur even in contexts without repeated

interaction. This is commonly observed both in experiments and in the field (Boyd et al.,

2003).

In the hundreds of case studies Ostrom analyzed of communities that successfully man-

aged CPRs, graduated sanctions were both observed frequently and were found to be impor-

tant to successful sustained management of the resource (Ostrom, 1990). Evidence of this

usefulness has further solidified by many later works too, including Bardhan (1993), Ostrom

(1993), Ghate and Nagendra (2005), Rubinos (2017), and van Klingeren and Buskens (2024).

This is especially true when they occur with the congruence between local conditions and

rules and proportionality between investment and extraction (Baggio et al., 2016). Iwasa

and Lee (2013) show in a theoretical model that graduated sanctioning works best when the

probability of erroneous reporting of players’ actions is low and there is heterogeneity in the

sensitivity to differences in payoffs. van Klingeren and Buskens (2024) find that graduated

sanctioning is more effective than strict sanctioning in the long term, and that there are
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specific conditions of when graduated sanctions are effective. There is also some evidence

that graduated sanctions are not always necessary when other institutions are used (De Moor

and Tukker, 2015; De Moor et al., 2021).

The conditions under which particular sanctioning types emerge remains unclear. We

know, for example, sanctioning behavior can be driven by inequality and reciprocal motives

(Visser and Burns, 2015). It can also be driven by the type of resource being governed. In

a study of South Korean fishermen, it was found that graduated sanctions were needed to

successfully manage mobile marine species, but not needed for successful management of

non-mobile marine species (Shin et al., 2020). Additionally, the policy that emerges must

in part be a function of the deliberative process by which policies themselves are formed

(De Geest and Miller, Unpublished Results). Ostrom (2000), Janssen and Ostrom (2006),

and Wilson et al. (2013) all illuminate the important role that agent-based models could

play in capturing such phenomenon, which serves as the groundwork for this endeavor.

Much has also been done on modelling of coordination behavior in commons games,

computational models being no exception. For example, De Geest and Miller (Unpublished

Results) explore how social choice mechanisms affect the policy that emerges from agents

playing a public goods game. Waring et al. (2017) propose a multi-level selection model,

similar to Traulsen and Nowak (2006), of resource harvesting with the aim of understanding

when sustainable practices emerge as the dominant paradigm in their context. A number

of papers explore evolutionary games of coordination for sustainability including Sethi and

Somanathan (1996), Tavoni A and S (2012), and Schlüter Maja and Simon (2016). Finally,

and perhaps most similar in aim to ours, Couto et al. (2020) propose an evolutionary game

aiming to understand why graduated sanctions are so effective, though they investigate policy

graduation in number of bad actors instead of punishment for the size of the violation as we

do in this study.

Our model is distinguishable from those above in a few important ways. First, instead

of population-level selection methods with possibly random mutations to strategies (genetic
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algorithms, evolutionary games with replicator dynamics, etc.), we utilize agent-level learn-

ing. Ostrom (2014) makes the case that the evolution of rules may follow different selection

processes than biological selection and that rule selection or changes to rules may be viewed

in some ways as a type of ‘policy experiment.’. We model this process of rule selection

and learning based on ‘policy experiments’ to find the better performing rules. This pro-

cess applies not only to the agents’ common resource use choices in the model, but also

the social planner’s policy choice (the Social Planner Model) and citizen/agents’ voting in

representative democracy (the Democracy Model). Further, we allow our policy maker(s)

and agents to have full access and flexibility to utilize all combinations of their policy and/or

action spaces. We believe modelling both policy choice and agent behavior as a relatively

unconstrained and intentional process of experimentation could be an important component

to understanding emergent behavior in such systems.

3 Theoretical Underpinnings

We first illustrate a game and its results when played by rational agents who make mistakes

via a trembling hand (Selten, 1975), in which agents may make random mistakes from Nash

Equilibrium. This theoretical result serves as the baseline against which we will compare

results from our computational model with boundedly rational learning agents. We also for-

malize our interpretation of graduated sanctions which we will reference later when analyzing

policy shapes that result from versions of our computational model.2

3.1 The Harvest Game

At the core of our model is the canonical N-player investment game with negative, instead

of positive, externalities. This game, which henceforth we refer to as the Harvest Game,

2In the terminology of Ostrom’s IAD framework, we are working at the “model” level but for the sake of
insights at the “theory” level about how institutional features relate to one another. This is all done within
Ostrom’s framework in terms of agents within an action situation which, in our case, is a simulated game of
a common-pool resource (Ostrom, 2014).
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represents our common-pool resource and the ways in which agents can interact with it.

Each time the Harvest Game is played, agents must decide how much they would like to

harvest from the resource hi ∈ [0, H]. Each unit harvested provides 1 unit of benefit to the

harvesting player, but contributes to a cost which each of the agents share. In particular,

the payoff to a selfish agent i as a function of their harvest choice is

πi(hi) = hi − αh− βh
2

(1)

where hi is agent i’s choice of harvest and h is the average harvest choice, i.e.

h =
1

N

N∑
i=1

hi (2)

Similarly, a rational, completely altruistic agent (one who cares for others’ well-being as

much as their own) would receive a payoff of

πi(hi) = h− αh− βh
2

(3)

which is equivalent to the average selfish payoff collected by agents.

3.2 Perfectly Informed Rational Agents with Mistake Making

In any game with agents who have trembling hands we imagine all players, after choosing

their strategy, have a small probability ϵ of “making a mistake.” When a mistake is made,

the player ignores their intended action and instead uniformly choose an action from the

action set. In the Harvest Game, this means agents who choose their harvest level have

a small chance ϵ to harvest a randomly chosen level instead. We then take the limit as

ϵ approaches 0 of these strategies to find the trembling hand equilibrium for the Harvest

Game.
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Solving the game, we find altruistic agents choose the socially optimal harvest level of

hSO =
1− α

2β
(4)

while selfish agents choose the potentially much larger

hCE =
N − α

2β
(5)

to harvest. Suppose for example there are 4 agents (N = 4), the maximum harvest level

H = 5, and the parameters governing the size of the externality generated are α = 0.8 and

β = 0.05.3 Then we’d find hSO = 2 and hCE = 5.

Unsurprisingly, all agents are better off under the altruistic choice (Equation 4). Since

selfish agents produce sub-optimal outcomes, a natural question is whether a policy can be

implemented to bring the behavior of selfish agents closer to that of altruistic agents. We

investigate this in the Social Planner Model and the Democracy Model. In the theoretical

framework, with rational agents who have some small chance to make an error and perfect

monitoring of harvest levels, there are a set of policy solutions which provide the correct

incentives to discourage rational agents from deviating from choosing non-socially optimal

actions.

In both the theoretical model and in the computational Social Planner Model, a policy

solution is produced by a social planner (from the top-down). In the Democracy Model, the

collective actions of the agent’s participation in government by voting determine the policy.

In all of the aforementioned cases, a policy function f(·) is chosen which maps penalties to

agents conditional on their harvest level. This would modify a selfish agent’s payoff function

3We will use these same parameters for all computational and theoretical solutions unless otherwise
noted: N = 4, α = 0.8, β = 0.05, H = 5 and a maximum allowable fine M = 10.
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to be

πi(hi, f(hi)) = hi − αh− βh
2 − f(hi) (6)

while an altruistic agent would receive

πi(hi, f(hi)) = h− αh− βh
2 − f (7)

where f is the average fine paid by agents, i.e.

f =
1

N

N∑
i=1

f(hi) (8)

Under the same parameters as given above, the social planner would find that the optimal

policy, if utilizing fines without redistribution, is

f(hi) = [0, 0, 0, 0.746875, 1.4875, 2.221875]

While the Nash equilibrium solution without trembling hands has an infinitely large set

of possible policy solutions, the policy solution to the Harvest Game with trembling agents is

simply the fine minimizing policy from that set.4 This highlights the importance of utilizing

the trembling hand solution as our point of comparison. Without the trembling hand, policies

with excessive fining would all be rational policy solutions. Knowing the penalties are never

realized in equilibrium, fine sizes are inconsequential in the non-trembling hand case so long

as they’re sufficiently large to discourage changes of behavior.

When the social planner utilizes fines with redistribution (such that there is no net loss

to social welfare), any policy function which satisfies the following criteria solves the social

4For more details, see Appendix A.
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planner’s problem:

f(hi) =


0 if hi = hSO

j ∈ [max(0, A+Bhi + Ch2
i ),∞) otherwise

(9)

where

A =
β(2N − 1)

N2
h2
SO − (1− α

N
)hSO

B = 1− α

N
− 2β(N − 1)

N2
hSO

C =
−β

N2

Notice that this does not say much about shape of the policy itself - it only provides a

lower bound on the optimal penalty levels. This means a policy vector which awards fines

of size [10, 10, 0, 10, 10, 10] for hi = 0, 1, .., 5 respectively solves the problem just as well as

the policy function [0, 0, 0, 1, 2, 3]. Note this extends directly from the fact that while fines

are painful to the agents face them, redistribution of those fines ensures there is no net loss

of social welfare. This means fining any amount is equivalent, so long as it’s sufficiently high

to deter agents from choosing something other than the socially optimal level. This result

remains unchanged from the Nash equilibrium solution without trembling hands.5

We find that the theoretical model with (and without) mistake making is insufficient to

explain graduated sanctions in contexts both with and without redistribution. We can see

the solution found for fine based policies without redistribution is not graduated (as will be

made clear in the next section) and the solution for policies with redistribution indicate that

the policy shape is irrelevant so long as it lies above the lower bound. This does not align

with what Ostrom observed (as will be discussed in the next section).

5For more details, see Appendix A.
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3.3 Defining Graduated Sanctions

Under graduated sanctions, a first, small infraction might result in a small fine, but a single

large infraction or repeated offences may result in a very high penalty (e.g. banishment from

the group and the resource). Here, we consider any harvest level above the socially optimal

level as an infraction, and we would describe a policy function as graduated if it is upward

sloping and convex (so both the overall and marginal penalty is increasing). Furthermore,

we would expect the size of the penalty at a harvest level just above socially optimal level

to be small relative to the minimum size that theory predicts a penalty can take while still

correcting behavior to the optimal.

Graduated sanctions can be most easily understood in contrast with draconian sanctions.

Draconian sanctions maximally (or near maximally) punish players for choosing non-socially

optimal harvest levels.

Based on the theoretical solution provided above, when fines are not redistributed, the

planner should utilize the solution found in Equation 3.2. This is not graduated, as it is not

convex in the region where harvest levels are above socially optimal (i.e. where hi > 2). In

fact, it’s slightly concave.

When the planner utilizes redistribution of fines in the theoretical model, however, the

social planner views the choice between graduated sanctions and draconian sanctions incon-

sequential, so long as the policy vector satisfies the criteria outlined in 9. This means that

while graduated sanctions could solve the planner’s problem, so could many other types of

policies including the draconian f(hi) = [0, 0, 0, 10 10, 10] and the more peculiar f(hi) =

[10, 10, 0, 7, 5, 3]. This is because the fines result in no net loss of social welfare but provide

sufficient deterrence.

We would expect, with limited information or bounded rationality, agents would utilize

their experience from earlier ‘mistakes’ to formulate their long-run strategies. In such a

world where mistakes/exploration choice is endogenous, the best choice of policy shape isn’t

so clear. While graduated policy (e.g. f(hi) = [0, 0, 0, 0.9, 1.8, 5]) will result in smaller direct
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losses to social welfare due to along the learning path fines, draconian sanctions (e.g. f(hi)

= [0, 0, 0, 10, 10, 10]) may correct behavior away from sub-optimal choices more quickly by

sending a very clear signal in a noisy environment. If we want to contextualize the conditions

that give rise to graduated sanctions, we’ll need to explore a more nuanced model of the

problem. We also cannot discount the role that biases and cognitive processes may play in

affecting policy shapes which theory has left out. The non-trivial affect of such processes

has been the focus of many researchers in psychology, biology, and behavioral economics.

Below we propose an agent-based model which allows for computational investigation

of learning and in later implementations (see Section 6) provides a platform for collective

decision making. The model is sufficiently flexible such that a wide array of agent-level

preferences, decision-making processes, and policy-formation processes can be explored. Im-

portantly, the flexibility with which the policy function f(.) can be chosen allows for arbitrary

policy shapes to emerge, graduated, draconian, or otherwise.

Much of Ostrom’s work demonstrates that these successful policies are not only graduated

in the size of infractions, but also in the number of infractions (ie. different penalties for

‘repeat offenders’). We intend to extend this model into dynamic punishments in future

work.

4 The Private Provision Model

4.1 The Private Provision Model Description

The Private Provision Model is our first computational model. In it, we encode a simulation

in which N agents play a repeated version of the Harvest Game. In each period, the agents

will choose a harvest level, hi, observe the outcome, and then collect their payoffs just as

before, though now we discretize the action set so the harvest level hi can take the value of

any integer from the set {0, ... H}. We equip each of these N agents with the ability to learn

from their past experiences with the goal of maximizing their individual payoff.
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First, we introduce the boundedly rational learning agents we use in all three models:

The Private Provision Model (this section, Section 4), the Social Planner Model (Section 5),

and the Democracy Model (Section 6). For simplicity we introduce these agents once, here.

4.2 Boundedly Rational Learning Agents

Agents learn through reinforcement:6

• Agents store the average performance of each action.

– Selfish agents use own utility as their measure of performance, given in equation

1 above.

– Altruistic agents use the sum of all agent’s utility payoffs as their performance

metric.

• Agents have a probability pt to explore and probability 1−pt to exploit, where pt starts

large and shrinks to zero.

• When agents explore, they choose an action with a probability proportional to its

average payoff. Actions which have not been chosen yet are initialized to a high level

of assumed performance.

• When agents exploit, they choose the action with the highest average payoff.

Unlike in traditional reinforcement learning where agents would use cumulative utility–

action scores which are additively updated by experiences as seen in Erev and Roth (1998)–

our agents use the additional experiences to update their estimates of each action’s average

performance. This is more akin to an expected utility formulation, and thus allows for more

direct comparison to traditional utility formulations which agents leverage in the theoretical

models.

6For more details, see Appendix B.
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Agents also utilize similarity as a baseline. Simply put, agents believe similar actions

have somewhat similar consequences. Mechanically, when an agent chooses an action and

receives feedback on the performance of that action, the agent also updates their estimates

of the average performance of nearby actions to a lesser degree. Similarity is a fundamental

element of experiential learning. To motivate using similarity to model learning in their

seminal work on case-based decision theory, Gilboa and Schmeidler (1995) quote Hume

(1777): “From causes which appear similar we expect similar effects. This is the sum of all

our experimental conclusions.”

Similarity is not just an appealing attribute in modeling agents’ learning; it also aids

computational tractability. If the action space is arbitrarily large, similarity may be helpful

for learning to occur in a reasonable amount of time. For example, in a model of learning

agents facing a continuous action space, treating each action as unrelated is infeasible.

This decision-making process strikes a balance between agent sophistication and sim-

plicity. Our agents are sophisticated enough to engage with a highly unconstrained policy

function while simple enough to facilitate interpretability of decision making and direct com-

parison to theory.

4.3 Results

We first investigate what altruistic and selfish agents will do in our computational model

when left to their own devices. Hence we run the model for populations of either fully

altruistic or fully selfish agents in the absence of policy. We work with the case of H = 5, so

there are six levels of harvest available: 0, 1, . . . , 5.

Altruistic agents . Recall the socially optimal choice is hSO = 2 given the parameters

detailed above. We compute the average level of attraction agents have to each of the six

available harvest levels across 25 runs at different periods of the Harvest Game. We find a

population of all altruistic agents chooses a harvest level of either 1 or 2 frequently. The

plot below in Figure 1 illustrates the distribution of the agents’ attraction to actions as it
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changes over time, moving in rainbow order from the initial (flat) red line to the final purple

line.

Figure 1: Harvest Levels in the Private Provision Model with Altruistic Agents

Altruistic agents learning to play pro-socially.

We note (and can observe in Figure 1) agents’ attraction to 1 is of non-trivial size. Upon

further investigation, we can identify the attraction to 1 comes from early periods of play

where choosing 1 is a good strategy to offset other volatile agents who at times may harvest

at levels higher than socially optimal. If you look at Figure 1, you can see this dynamic

occurring - agents have accumulated much of their attraction to 1 by period 2000, where as

agent attraction to 2 still grows to a fairly large degree from periods 2000 to 5000. Further,

you can see the attraction to 1 becomes less predominant relative to 2 as attractions to

actions greater than 2 decreases. This is consistent with behavior we expect from trembling

hand agents, as a harvest level below 2 can be part of an optimal strategy when ϵ > 0 (that

is, when mistake making occurs with some frequency). Even still, it is clear that the socially

optimal choice of 2 becomes the favorite action most often, and the the difference is in the

direction of pro-sociality.

We can also compare the average social welfare generated by altruistic agents in the
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simulation to that generated in the theoretical model. For this analysis, we interpret the

results from the following equation:

Ψ(X)Recovered =
Ψ(X)−Ψ(hCE)

Ψ(hSO)−Ψ(hCE)
(10)

where Ψ(hCE) is the average felicity generated in a round when agents all play hCE = 5,

Ψ(hSO) is the average felicity generated in a round when agents all play hCE = 2, and Ψ(X)

is the average felicity generated for an agent in a round when learning agents (who have

given decision making variables X) play the game. Since our model is stochastic to some

degree, we compute Ψ(X) as an average over 25 separate runs of the model.

This metric normalizes the average social welfare generated in our simulation by the gap

in social welfare generated in the Harvest Game when agents act altruistically vs. selfishly.

If we think about the social welfare generated when agents are selfish as reality and we

consider the social welfare generated agents are altruistic as our goal, this metric will tell us

how much of the social welfare gap is recovered in our simulation.

In this particular case, we’re interested in seeing how closely our altruistic learning agents

who use similarity get to what theory predicts social welfare should be in the absence of

policy.

Under the game parameters described above, player will receive a payoff of Ψ(hCE) =

-.25, Ψ(hSO) = .2, and Ψ(X) ≈ 0.187. Thus, we find our altruistic learning agents recover

about 97% of the social welfare lost when agents act selfishly rather than altruistically.

Selfish agents. Now recall hCE = 5. We produce a similar plot for a population of

all selfish agents below. We see agents fairly quickly converging to a harvest level of 5,

demonstrating the tragedy of the commons.
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Figure 2: Harvest Levels in the Private Provision Model with Selfish Agents

Selfish agents learn to play the individually optimal choice in absence of policy.

This behavior is fairly consistent with theory. Selfish agents act identically to what theory

predicts in the long run. We can see that in general, agent behavior in the Private Provision

Model docks fairly closely to what theory predicts.

We find that selfish learning agents also achieve a level of social welfare very similar to

theoretical results, with Ψ(f(.), X) ≈ -0.23 (The prediction from theory is −0.25). Again,

we can use Equation 10 to see how much social welfare is recovered (if any) when selfish

learning agents are left to their own devices. We find on average, only about 4.3% of the

social welfare gap is recovered.

5 The Social Planner Model

5.1 The Social Planning Model Description

In the Social Planner Model, we introduce a benevolent social planner who cares equally

about the welfare of all agents in the commons and has a specific policy tool. This model

modifies and extends the Private Provision Model (Section 4). Other than the introduction
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of this tool, the model is unmodified. Importantly, the citizen agents in the model remain

the same: they are the boundedly rational learning agents described in Section 4.2.

The policy tool is a policy function f(·) which applies penalties to agents conditional on

their harvest choices (just like in the theoretical model). We model the policy function f(·)

as a fully flexible vector with one entry for each possible harvest level agents can choose {0,

... H}. The social planner chooses the policy function f(hi) with the goal of maximizing

social welfare which is given by

Ψ(f(hi)) = ΣN
i=1Σ

T
t=0πi(hi, f(hi)) (11)

(Recall from Equations 6 and 7 that f(hi) enters each agent’s utility as an additive

penalty corresponding to their choice of hi.)

We designed a social planner which computationally explores the fitness landscape of the

policy space via a combination of hill climbing and simulated backwards induction, which

we aim to summarize as follows:7

The social planner starts with a randomly chosen policy from the policy space. In our

case, this is a vector of six numbers drawn uniformly from [0,10] (including decimals up to

hundredths). Each round of the simulation, the social planner will compare their stored

‘best so far’ policy to close alternative policies in the policy space by running a simulation

of the world under each candidate policy. The planner then observes the social welfare

generated under each policy and keeps the best from that set of options.8 This comparison to

neighboring policies is repeated once for each depth of the search we allow the social planner.

To be clear, the depth parameter establishes how many rounds of policy searching the social

planner is engages in. Through this iterative exploration process, the social planner explores

the policy space with the intention to find a high performing policy. Since this process is

path-dependent, we also allow the social planner to repeat this whole process a number

7For more details, see Appendix C.
8Since any digit with two decimal places from [0,10], there are 1000 possible values for each of the six

harvest levels, yielding 1018 possible policies
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of times (in our case, 25 times) from different starting points (i.e. starting with different

randomly chosen initial policies). At the end of this process the best policy which they have

found so far we denote f*(.). To ensure this exploration process wasn’t ended prematurely,

we look at the marginal improvements in social welfare over search-time of the policy space

to look for convergence.

This process is analogous to backwards induction. We can think of this process in terms

of a two-stage game in which the social planner must choose a policy first. After the policy-

choice stage, the agents then decide, in the next stage, how to harvest in response to the

policy. It can be thought of as the social planner running repeated “internal” simulations of

agents’ responses to the policies, until finally deciding to implement the policy which appears

to perform best. Once the policy is decided upon, the policy is realized and agents must

now decide how to respond to it.

This approach allows the social planner to engage with the complicated optimization

problem without encoding any policy preferences.

5.2 The Social Planning Model Results

5.2.1 The Social Planner Chooses Fines without Redistribution

Next, we run the simulation with the benevolent social planner and selfish agents. The

social planner chooses a policy in the form of a fines without redistribution, meaning the

fines imposed by the policy are lost to the community—they do not directly improve social

welfare. Instead, they steer behavior. We present the emergent policy resulting from the

bounded optimization of the social planner in two contexts, one in which the agents use a

particular cognitive process important to learning, similarity, and one in which they do not.

In the case where agents don’t use similarity in their decision making, the social planner

decides to implement the following policy

f*(.) = [0.0, 0.0, 0.0, 0.92, 2.13, 2.42]
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which falls on average just 25% above the theoretical solution given in 3.2. First, we can

see that the non-trivial portion of the fine vector (ie. the region above the socially optimal

choice) is non-convex and in fact is concave, as theory predicted. Second, by looking at

the plot in Figure 3 documenting agents’ choices over time, we can confirm that the policy

makes it incentive compatible for the selfish agents to choose the socially optimal level of

harvesting hSO = 2.

Figure 3: Harvest levels In The Social Planner Model without Similarity

Selfish, non-similarity utilizing agents learn to play the socially optimal choice under top down

policy

Further, we can use a generalization of equation 10 to draw some conclusions about how

well this policy solves the social planner’s problem.

Ψ(f(.), X)Recovered =
Ψ(f(.), X)−Ψ(hCE)

Ψ(hSO)−Ψ(hCE)
(12)

This equation will tell us how much of the social welfare lost (when agents act selfishly

rather than altruistically in the absence of policy) is recovered when learning agents use X

in their decision making and face policy f(.). The learning agents in this case are selfish
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and don’t use similarity in their decision making. As before, Ψ(f(.), X) is computed as an

average from 25 separate runs of the model.

We find Ψ(f(.), X) ≈ 0.16 and approximately 91.3% of the social welfare lost when agents

act selfishly rather than altruistically is recovered by this policy.

While the policy seems to solve the problem pretty effectively, as noted above, it is

non-convex. Thus the fairly effective policy solution discovered by the computational social

planner does not fit our definition of graduated sanctions.

In the second case, where agents do use similarity in their decision making, the social

planner finds a different-looking policy solution:

f*(.) = [0.0, 0.0, 0.0, 0.99, 1.7, 10]

We can see that much of the policy looks similar to the policy solution found when

agents don’t utilize similarity in 5.2.1, with violations for choosing an hi of 3 or 4 averaging

to about 23% above the theoretical solution given in 3.2. We find, however, that the ultimate

infraction comes at a hefty fee of a maximal fine of 10.

Also as before, looking at the plots below, players quickly learn to choose a socially

optimal harvest level of 2.
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Figure 4: Harvest levels in the Social Planner Model with Similarity

Selfish, similarity-utilizing agents learn to play the socially optimal choice under top down policy

Unlike in the previous cases, it seems this policy nearly satisfies our definition of graduated

sanctions. The best policy adopted by the social planner has a small fine for choosing the

smallest violation, hi = 3, only about 33% greater than what theory predicted was necessary

for optimality in the trembling hand case. For the maximum violation of hi = 5, however, we

see a fine which is approximately 4.5 times greater than what theory predicted. This policy

is not convex; the changes are 0 → .99 → .8 → 8.3, and the third change fails to be larger

than the second. However, it is close to convex in that the fine for the smallest sanction is

relatively small while the largest violation comes with at a hefty price.

Noting that f(.) is characterized by the policy above in 5.2.1 and our agents are selfish

and use similarity (a characterization of X which will be used henceforth without further

restatement), we find that Ψ(f(.), X) ≈ 0.162. Once again using equation 12, we see ap-

proximately 91.5% of the social welfare gap is recovered. Interestingly, this best found policy

(5.2.1) performs almost exactly as well at recovering social welfare when agents use similar-

ity as the previously best found solution (5.2.1) when agents do not use similarity. By only

changing agent reasoning to utilize similarity, we see the commons problem is equally well
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solved but by a fairly different policy shape. Further, we see a graduated policy function

emerge from top-down exploration of fine based policies without redistribution by a social

planner.

5.2.2 Comparing Social Welfare Generation by the Theory Policy Recommen-

dation

Next, we want to see how well the policy recommendation from theory (where agents have

a trembling hand) performs at correcting the behavior of our selfish learning agents. We

find that an agents average round payoff under this policy given by Ψ(f(.), X) ≈ -0.182

and only about 15.2% of the lost social welfare is recovered. Restated, this means that the

policy recommendation given above in (5.2.1) performs more than 6 times better than the

one proposed by theory.

This may be surprising to some. How can that be? Simply put, the theoretical model’s

agents don’t make mistakes as a function of the payoffs while our learning agents do. Given

higher fines will discourage learning agents from choosing certain actions as frequently, it

seems fairly intuitive optimal fines may need to be higher as they play an additional role in

discouraging future exploration of actions which are particularly harmful to social welfare.

This increase in fines over the theoretical model’s solution we noted earlier will result in some

direct loss in social welfare when compared to the social welfare achieved in the theoretical

model (about 8.5% to be precise), but again, is offset by the benefits from discouraging future

exploration of particularly costly actions. This 8.5% social welfare loss can be thought of as

a social welfare premium paid for having a population of learning agents with endogenous

mistake making / exploration.

5.2.3 The Social Planner Chooses Fines with Redistribution

Next, we investigate a context in which the fines collected, pooled, and then redistributed,

contributing directly to social welfare. Recall that, from theory, a wide array of policies could
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maximize social welfare equally well, as seen in Equation 9. In this context, we hypothesized

that a policy vector resembling draconian sanctions would be more favorable than in the

version of the model where there was no fine redistribution, as the lost social welfare from

fining bad behavior reenters social welfare (one for one) through another channel. The policy

the social planner discovered was:

f*(.) = [0.0, 0.0, 0.0, 0.8, 10, 9.99]

This policy is almost draconian in that they maximally punish hi = 4 and hi = 5 but

not hi = 3. Why? The social planner wants players to pick the socially optimal level of

investment hSO = 2. They have no concern for how much non-compliers are punished. This

leads us to believe that a draconian policy like [0, 0, 0, 10, 10, 10] might perform well, as

all of the actions which agents would normally prefer over the socially optimal are now very

costly to choose. Agents decide with similarity however, so choosing 3 early and receiving

a huge fine may dissuade players from playing 2. Hence, we see a drop off in the intensity

of fines for choosing a harvest level of 3, as it is fairly similar to the socially optimal choice

of 2. Runs without similarity indicate that the similarity is pivotal in lowering the fine on

hi = 3 from near 10 to it’s much lower level of 0.8.

This policy choice is consistent with theory in that all of the fine levels chosen fall within

the set of fine functions which will maximize social welfare as shown in Equation 9. Once

again, we can see in the plot below that the best policy found by the social planner corrects

behavior to the socially optimal level in the long run.
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Figure 5: Harvest levels in the Social Planner Model with Redistribution

Selfish agents learn to play the socially optimal choice under top down policy when fines are

redistributed.

The right hand side of the plot above shows that the yellow, green, and blue lines are much

closer to 0 than in the cases where fines were not redistributed, demonstrating that agents’

behavior is corrected much faster with the draconian sanctions. Unlike in previous plots,

by round 2000 agents almost never choose harvest levels of 4 or 5. Since fine redistribution

nullifies the reduction in social welfare from punishing agents, a policy punishing agents

severely has become more appealing to the social planner than it did previously.

6 The Democracy Model

6.1 The Democracy Model Description

In the Democracy Model, we investigate the effect that social choice mechanisms have on

the shape and efficiency of emergent policy when we replace the social planner with an

implementation of a two party representative democracy with faithful representatives. This

model extends and modifies the Private Provision Model Section 4) and Social Planner Model
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(Section 5); the setting is identical, and, importantly, the citizen agents in the model remain

the same: they are the boundedly rational learning agents described in Section 4.2.

In this model of representative democracy, all agents participate in shaping policy by

voting in elections for representative who have clearly stated policy platforms. These repre-

sentatives then carry out their promised platforms without error or misrepresentation (hence

“faithful.”). Each election process can be summarized as follows:9

1. The two parties propose a point in policy space as their platform (randomly to start).

2. Agents forecast the effect the new policy will have on their own expected utility and

compare it to the incumbent policy by running a small number of simulations using

the model.

3. Agents vote for the policy which they forecast will yield themselves the highest expected

utility, with majority rule deciding the winning policy.

4. The losing party amends their proposed policy by utilizing a form of hill-climbing,

informed by the number of votes they received. The winning party maintains their

current platform.

In this model of democracy, parties are free to adopt different platforms (i.e. policies

f(.)) with access to a completely flexible functional form. The representatives do not value

the welfare of the agents directly; instead they only care about getting elected (and to a

lesser extent, maximizing their vote share). This implementation is built on the idea that

the pressure to offer policies which better serve voters comes from competition for votes.

This is fairly optimistic view of democracy, since, by assumption, representatives always

implement they policies they campaign for, they have no personal agendas, nor do they

benefit whatsoever from additional fines collected.

9For more details, see Appendix D.
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6.2 The Democracy Model Results

The dominant policy which emerges under our implementation of democracy is:

f*(.) = [0.05, 2.7, 0.01, 2.92, 1.75, 5.53]

This carries some noticeably different features from policies which emerge from a top-

down, benevolent social-planner in two important ways. First, the fines are not monotonically

increasing in harvest levels. Second, this policy fines players who choose less than the socially

optimal level. (The policy even fines players who choose the socially optimal level, though

the fine is extremely small).

While it may seem surprising, this policy does fall into the large set of policy solutions

that can be found in the version of the Harvest Game without trembling hands, meaning it

should correct behavior (excluding that choosing hi = 2 should yield a fine of 0, not 0.01,

though this small fine is likely an artifact of the search process). We can see that it solves the

tragedy of the commons problem by successfully encouraging agents to choose the optimal

level hi = 2 in Figure 6.

Figure 6: Harvest levels in the Democracy Model

Selfish agents learn to play social optimal in the face of bottom up policy.
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As we did in Section 5, we calculate how much social welfare is recovered by implementing

this policy using Equation 12. Performing this calculation, we find Ψ(f(.), X) ≈ 0.115,

meaning that the policy recovers 81.1% of the social welfare lost when agents act selfishly

rather than altruistically. Democracy fares quite well compared to the Social Planner under

top-down policy (Section 5.2.1), where 91.3% of the social welfare loss is recovered. The

level of social welfare achieved by democracy is quite remarkable when comparing it to the

top-down computational social planner which is both benevolent (caring about all agents

equally) and fairly information unconstrained (having a fairly accurate forecast on how

happy a policy will make each agent). Despite having purely selfish, information constrained

learning agents, and despite only having two representatives to vote for, the policy found via

democracy recovers about 88.6% as much social welfare as the policy recommended by the

benevolent social planner.

Our hypothesis was that democracy would find a solution similar to the benevolent social

planner’s, both in policy shape and performance; we found it was a different shape but did

not fall too short in improving social welfare. After investigating runs which allowed twice

as many elections, this seems not to be the case as there was no noticeable change in the

optimality of the emergent policy. The reason is as follows. In our model, representatives

take the position that if they’re losing, something needs to change. It is through this desire

to win the election that the agents are driven to refine their policies, resembling in many

ways market competition. It is also the case, however, that the winner is under no such

pressure to change if their existing platform has performed very well in the past. Given

this, a proposed policy that has room to improve but nonetheless dominates in the voting

competition will cap out at the maximum potential of the best outside option. For example,

if party A and B have platforms in different regions of the policy space, whenever one of the

parties ’peaks’ (i.e., finds the best solution nearby), the other also stops improving.

This is analogous to a second price auction, which provides some intuition. If A and B

have two good policies, but A’s policy is only slightly better than the best B can do in their
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region of the policy space, then A will continue to win elections with their existing policy,

which means policy no longer changes. Even though A could potentially improve long-run

social welfare by searching the policy space, that could risk re-election without an increase

in winning frequency. So the analogy to the second price auction is, A wins as “the highest

bidder” and “pays” social welfare just a hair above the social welfare generated by the best

policy B can find.

In the very long run, given how we have modeled democracy, if B ever randomly ap-

proaches A in the policy space, then it is possible for democracy to find the optimal solu-

tion, as both political parties will be climbing the same hill, so to speak. This may, however,

take a very long time, depending on the fitness landscape of the policy space. Additionally,

this possible (though highly improbable) event of two parties advocating for similar policies

may not often map back to the real world (especially given recent concerns about political

polarization).

The policy discovered by democracy loses social welfare due to excessive fines, despite

the fact that representatives don’t directly receive these excess fines collected. Presumably

this problem would worsen if they did.

We conclude that while democracy was able to solve to commons problem, it did not do

so utilizing a graduated policy.

7 Discussion

We have presented a number of variations of our computational model. In this section we

take stock of what we’ve established, both summarizing what we’ve established and building

upon it through comparison of our simulated experiments.
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Motivating the Model

We sought to investigate whether the design principle of graduated sanctions could emerge

from an agent-based model. Existing theoretical models, both with and without mistake

making, are insufficient as tools to investigate elements of policy shape as discussed in Section

3, because they either do not result in graduated sanctions (which is in stark contrast to what

we observe in the real world), or in the case of fine redistribution, make little claim about

policy shape at all. We need a new model which encodes the important details required to

study why and when we might expect to observe certain policy function shapes or features

emerge as successful policy solutions in the real world. Given Ostrom’s references to the

potential importance of modelling the intentional exploration process of policy formation and

response, we introduced a model of learning agents and policy makers. Having now seen that

our model replicates theory in the simple case (with no policy) and produces distinct policy

solutions under different conditions—similarity vs. not, fining with or without redistribution,

social planning vs. social choice— we think our computational model has demonstrated its

value as a tool for theorizing about CPRs.

Comparing the Model to Theory

We also demonstrated that in our computational model, agent behavior matched our first

set of theoretical predictions in the absence of policy in Section 4.3. We also saw in both

cases that a similar level of social welfare was achieved as theory predicted. The policies

found in the Social Planning Model (Section 5.2) and in the Democracy Model (Section 6.2)

differed from the solution found in the theoretical Harvest Game model with trembling hands.

Further, we demonstrated that applying the theoretical policy solution to the computational

model resulted in fairly poor levels of social welfare attainment. This exemplifies the potential

sensitivity of policy solutions to cognitive simple cognitive processes. In our case, we found

fairly different policy solutions for a population of agents who learn and explore actions

intentionally as opposed to rational decision making with exogenously determined, uniform
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mistake making.

Establishing Sufficient Conditions

Through the variations of our model that we have explored, we have started to characterize

which conditions are sufficient and which features may be pivotal in determining which policy

shapes produce the most social welfare in their context. In particular, we draw three primary

conclusions from our simulated trials:

How agents learn and make mistakes can affect policy shape. Learning agents having the

ability to use similarity in their decision making is pivotal to the emergence of graduated-like

sanctions in contexts where sanctioners don’t redistribute collected fines. Given the funda-

mental nature similarity plays in learning and decision making in many intelligent creatures,

it makes sense that allowing agents to use similarity in their reasoning to achieve long-run

solutions for managing CPRs might produce results closer to what we observe in the real

world - graduated sanctioning. Even in contexts where there is no similarity in reasoning,

the best performing policy differs from what theory predicts. When agents learn and their

exploration of the action space is intentional, our model shows modest additional fines over

what theory predicts are required to discourage future exploration of actions which are par-

ticularly harmful to social welfare when fines are not redistributed. The importance of this

finding, along with the role of similarity highlighted above, also suggests that modelers and

analysts should perhaps be cautious about abstracting away from similarity and other learn-

ing processes when modelling behavior in other such contexts, as the policy recommendation

may be fairly sensitive to these common cognitive processes.

The institutional design of sanctions can affect policy shape. If collections from sanctions

don’t feed back into the community, either because the fines cannot be redistributed or

because of a lack of low-cost redistribution mechanisms, a social planner has incentive to keep

sanctions relatively low. By contrast, the existence of effective reinvestment or redistribution

opportunities that produce social welfare with the revenue from collected fines is sufficient

30



to facilitate the long-run adoption of more draconian sanctions.

Social choice mechanisms can affect policy shape. Lastly, we observe that democracy can

solve the commons problem and does so with a fairly modest loss of social welfare when

compared to the all knowing, benevolent social planner. The emergent policy shape is fairly

unusual, however, resulting in excessive fining - in spite of the fact that representatives do

not personally benefit from additional fines collected. While not explicitly explored, we

suspect the extent to which social welfare is lost and the shape of the policy that emerges

both depend highly on where the parties initially reside in the policy space and the fitness

landscape of the policy space itself. This stems from the fact that winning representatives

only need to outperform their next best performing rival and, in our model, don’t take risks

with their platforms when existing ones have proven successful.

8 Conclusion

As sustainability becomes more salient in the public consciousness, understanding when and

under what conditions particular policies should be implemented and sustained to facilitate

responsible use of common-pool resources grows ever more important. Adding to the lit-

erature on coordination and resource management spanning many fields, we have provided

evidence for some sufficient conditions for the emergence of graduated (or draconian) sanc-

tions as successful long-run policy solutions for managing CPRs. Additionally, as Ostrom

had demonstrated in her work through the diversity of policy solutions she mentions were

observed, we have started to develop a better understanding of the delicate relationship cog-

nitive processes and policy constraints have with the types of policies that will prove most

successful and how computational models can help us to pick at some elements of these

relationships.

In a broader sense, we contribute to an ongoing discussion in the economics literature on

the value of computational methods and where their applications in the field appropriately
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lie. A strength of agent-based models is their ability to allow researchers to explore worlds

in which tractability assumptions can be relaxed. Further, the researcher can treat decision

making processes and model features as modular, substitutable components whose many

combinations can be explored. With such methods in their tool-kits, researchers can begin

to chip away at previously inaccessible regions of the research frontier, in tandem with

utilization of more tried and true field methods to ground their findings. In our case, we use

a model which encodes simple behavioral decision making rules and evolve policy solutions

in a fairly unconstrained manner, but grounded in well studied theoretical models. This

allows us to start bridging a gap between theory and what we observe in the natural world

in a way that one method alone is incapable of.

Understanding that it is often easier to check if a policy solution is optimal than to

find the optimal policy solution itself, tools that aim to automate the exploration of the

policy space are of the utmost importance for solving complex policy problems. Such ideas

are not new. For example, algorithmic game theory utilizes computational methods to solve

practical real-time auction problems (Nisan et al., 2007). Still, we contribute to this literature

in formulating one such way to apply computational exploration of policy questions.

While not the focus of this paper, this methodology may have applications for designing

mechanisms which have desirable properties when faced by a wide variety of boundedly

rational agents. Given the increasing prevalence of behavioral economics and recognition

of humans’ bounded rationality in decision theory, researchers may find value in tools like

this one to find well-performing candidate policy solutions facing a variety of boundedly

rational agent specifications. Perhaps someday such methods could be integrated into the

early stages of policy solution exploration, after which small-scale studies can be performed

to evaluate their performance in the wild.

Our model opens up future work. We will investigate policies with dynamic sanctioning—

that is, tracking individual agents’ history of violating rules and fining them accordingly. We

will also investigate the role of agent heterogeneity might play in their ability to solve the
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commons problem, which may play a role in both how and how well the commons problem

can be solved by different policy selection mechanisms. We will also explore conditions

under which Ostrom’s other design principles may emerge and how those principles relate

to graduated sanctions and to each other.
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Appendices

A Solving the Theoretical Harvest Game

A.1 Rational, Selfish Agents Facing No Policy:

Agents try to choose hi to maximize their own payoff given by Equation 1, hence their

maximization problem is

max
hi∈[0,H]

[hi − αh− βh
2
] (A1)

Where h is the average harvest choice given in Equation 2. Taking first order conditions, we

get

1− α
1

N
− 2β

N2
(h∗

i + Σ−ihj) = 0 (A2)

By symmetry, we can simplify the latter portion of the equation in the following way

h∗
i + Σ−ihj = Nh∗

i (A3)

Now we can substitute Equation A3 into Equation A2 and do some simplification.

1− α
1

N
− 2β

N2
Nh∗

i = 0 (A4)

1− α
1

N
=

2β

N2
Nh∗

i (A5)
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1− α
1

N
=

2β

N
h∗
i (A6)

N

2β
(1− α

1

N
) = h∗

i (A7)

Simplifying once more we find the competitive equilibrium solution as included above.

hCE =
N − α

2β
(5)

A.2 Rational, Altruistic Agents Facing No Policy:

In the altruistic agents’ maximization problems, hi is chosen to maximize the sum of all

players’ payoffs. This problem is well known to be equivalent to the benevolent social plan-

ner’s problem in which they must choose the harvest levels for the agents to maximize the

sum of all player’s payoffs. This is given by

max
{h1,...,hN |∀hi,hi∈[0,H]}

ΣN
j=1[hj − αh− βh

2
] (A4)

Again with h as the average harvest choice given in Equation 2. By symmetry, the

problem can be reduced to

max
h∈[0,H]

ΣN
j=1[h− αh− βh2] (A5)

max
h∈[0,H]

N [h− αh− βh2] (A6)
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Taking first order conditions, we get

1− α− 2βh∗ = 0 (A7)

1− α = 2βh∗ (A8)

As included above, we find

hSO =
1− α

2β
(A9)

A.3 Rational, Benevolent, Fully Informed Social Planner Choos-

ing Policy:

In this problem, the social planner does not have direct control over agent harvest levels.

Instead, the planner must choose a policy f(.) to influence the choices selfish agents make,

aiming to maximize social welfare. First, let’s assume the planner aims to maximize social

welfare excluding the penalty to agent benefit incurred from the policy itself. Later, we’ll

show this distinction is of little consequence in the theoretical model. Thus the social planner

must choose f(.) to solve the following maximization problem

max
f(.)

ΣN
j=1πi(hj) (A10)

Knowing that agents will choose hi conditional on what f(.) is

πi(hi, f(hi)) = hi − αh− βh
2 − f(hi) (4)

Then it should be clear, by backwards induction, the social planner needs to pick a policy
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function f(.) such that agents, when facing the policy function, choose the socially optimal

level of hi given in Equation 3. A policy function f(.) will induce this if the following

condition holds

∀hi ̸= hSO, πi(hSO, f(hSO)|hj = hSO∀j ̸= i) ≥ πi(hi, f(hi)|hj = hSO∀j ̸= i) (A11)

That is, the payoff of choosing the socially optimal harvest level hSO when everyone else

is also choosing the socially optimal harvest level has to be at least as good as choosing

anything else. Utilizing the fact that the policy function enters agent payoffs additively, we

can create the following equivalent inequality which must hold for our policy function f(.) to

maximize social welfare:

f(hi) ≥ πi(hi|hj = hSO∀j ̸= i)− [πi(hSO|hj = hSO∀j ̸= i)− f(hSO)] (A12)

Simply put, agents have to be penalized at least the marginal benefit they would get if

they choose something other than hSO.

Using Equation 1 we can rewrite part of Equation A12 as the following

πi(hi|hj = hSO∀j ̸= i) = hi − α
1

N
ΣN

j=1hj − β(
1

N
ΣN

j=1hj)
2 (A13)

which simplifies to

πi(hi|hj = hSO∀j ̸= i) = hi − α
1

N
(hi + (N − 1)hSO)− β(

1

N
(hi + (N − 1)hSO))

2 (A14)

Substituting Equation A14 into Equation A12 we get

f(hi) ≥ (hi − α
1

N
(hi + (N − 1)hSO)− β(

1

N
(hi + (N − 1)hSO))

2)
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− [(1− α− β(hSO))hSO − f(hSO)] (A15)

which can be rewritten after quite a bit of algebra as

f(hi) =


X if hi = hSO

j ∈ [X + A+Bhi + Ch2
i , inf) otherwise

(A16)

where

A =
β(2N − 1)

N2
h2
SO − (1− α

N
)hSO

B = 1− α

N
− 2β(N − 1)

N2
hSO

C =
−β

N2

and x is whatever the social planner chooses to fine or punish an agent who chooses the

socially optimal level of harvest. Any policy that satisfies Equation A16 is optimal for this

social planner.

In our context, we impose one additional constraint. Since we don’t allow negative

fines (subsidies or rewards), the lowest possible fine allowed is 0. Incorporating this into

Equation A16, we get the more constrained set of possible policy solutions below.

f(hi) =


X if hi = hSO

j ∈ [max(0, X + A+Bhi + Ch2
i ), inf) otherwise

(A17)

where

A =
β(2N − 1)

N2
h2
SO − (1− α

N
)hSO

B = 1− α

N
− 2β(N − 1)

N2
hSO

C =
−β

N2
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Now if we suppose the social planner wants to maximize social welfare, considering f(.) as

harmful to social welfare as one might conventionally think would be the case, the solution

set given in Equation A16 is only altered such that X = 0 must hold. This is because rational

agents will only ever incur the penalties associated with on equilibrium path actions. Since

the only on equilibrium path penalty the players face is f(hSO), the negative effect fines have

on social welfare is minimized by simply making the fine associated with choosing f(hSO)

= 0. Plugging this condition into Equation A17, we get the policy solution in Equation 9.

As we’ll show in the next section, the solution set remains unchanged in the trembling hand

version of the problem when fines are redistributed.

A.4 Solving the Harvest Game for Rational Agents with Trem-

bling Hands:

In trembling hand equilibrium, agents will still choose hi to maximize their own payoff.

Agents in this context are distinct from in the typical context in that they have a small

chance, ε, to forgo playing their intended harvest level hi. Instead, a random harvest level

is chosen uniformly from the action set, which in our case, is the interval [0, H] (recall H

is the maximum harvest level possible. This dynamic is meant to capture mistake making

(e.g. a ’mouse slip’). We can find a trembling hand equilibrium by solving the game for an

arbitrary (but small) ε, and then taking the limit as ε approaches 0.

Thus, the selfish agent’s problem can be reformulated as:

max
{ĥ1,...,ĥN |∀ĥi,ĥi∈[0,H]}

ĥj − αĥ− βĥ
2

(A18)

with

ĥk =


hk with probability 1− ε

hrandom U [0, H] otherwise

(A19)
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Since all trembling hand equilibrium is a Nash equilibrium and there always exists a

trembling hand equilibrium, and given that this problem has a unique (symmetric) solution,

we can see that that the selfish agent’s optimal harvest level remains unchanged from the

general case, as seen in Equation 5.

Similarly, an altruistic agent’s problem is given by

max
{ĥ1,...,ĥN |∀ĥi,ĥi∈[0,H]}

ΣN
j=1[ĥj − αĥ− βĥ

2

] (A20)

and once again, we find that the altruistic agent’s symmetric Nash equilibrium remains

unchanged (given in Equation 4) from the base case as ε approaches 0 as, once again, there

exists a unique symmetric Nash equilibrium.

For a policy maker facing trembling agents without redistribution, their problem state-

ment is given as follows:

max
f(.)

ΣN
j=1πi(ĥk) (A21)

i.e.

max
f(.)

ΣN
j=1[ĥj − αĥ− βĥ

2

− f(ĥ)] (A22)

The policy maker’s solution set (from Equation 9) collapses to a single solution, given by:

f(hi) =


0 if hi = hSO

max(0, A+Bhi + Ch2
i ) otherwise

(A23)

where

A =
β(2N − 1)

N2
h2
SO − (1− α

N
)hSO
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B = 1− α

N
− 2β(N − 1)

N2
hSO

C =
−β

N2

This is simply the floor of the Nash equilibrium solution set with X = 0. This solution

refinement is simply the result of the fact that the policy maker believes there is some chance

that any harvest level will be chosen by an agent. Given this, the off equilibrium path harvest

levels can’t have arbitrarily high punishments in equilibrium. Instead, the social planner fines

non-socially optimal behavior just enough to make players indifferent (between hSO and any

alternatives), which minimizes the loss to social welfare incurred by agents who happen to

tremble.

In the social planner’s problem with redistribution, however, the solution remains un-

changed from the Nash equilibrium solution set given in Equation 9. Since punishment

doesn’t affect net social welfare (outside of how it steers agent behavior), incurring a higher

than need-be off equilibrium fine remains irrelevant for social welfare.
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B Agent Decision Making

At the start of the game, Agents:

• Initialize

Each round of the game, agents:

1. Choose an action

2. Update their action scores

3. Update their exploration rate

Initialization

Each agent i starts with an action set and a vector of scores S associated with each action

in that action set. Each score in the score vector starts as some arbitrarily large number Z.

In our case, agent i chooses hi ∈ {0, ..., H}, so we can write our initialization step as follows

Si(hi) = Z ∀hi ∈ {0, ..., H} (B1)

Agents also keep track of how often they have chosen each action with a vector freq. At

the start of the model, each entry in freq is 0, as no action has been taken yet. Formally

freqi,t=0(hi) = 0 ∀hi ∈ {0, ..., H} (B2)

Each agent also starts with a few initial parameters which will guide their rate of explo-

ration. Agents have an initial probability to explore pt and a rate at which that exploration

rate decays λ. We set pt = 1 and λ = 0.0005 as our baseline values.
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1. Choosing an Action:

First agents must decide whether to explore or not. Agents have a probability of pt to

explore and 1-pt to exploit.

Explore

The agent chooses an action from your action set randomly. The probability with which an

agent chooses an action is proportional to its score.

Prob(hi) =
Si(hi)

ΣH
j=0hj

(B3)

Exploit

The agent chooses the action with the highest score.

hi = argmax
hi

Si(hi) (B4)

Note that in the case of a tied score, an action is chosen randomly from the tied candidates

with equal probability.

2. Updating Action Scores:

First, when an action is chosen, we must update the frequency vector freqi,t to reflect the

agent chose hi this round.

freqi,t(ĥi) =


freqi,t−1(ĥi) + 1 if ĥi = hi

freqi,t−1(ĥi) otherwise

(B5)
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Next, we need to update the score associated with each of our actions. Recall at ini-

tialization, each action has some high level of attraction. Three such cases arise during this

step.

1. For actions not chosen this round, their scores remain unchanged.

2. If this is the first time the agent has chosen hi (ie. if freqi,t−1 = 0), we replace the

score which was set during initialization with the normalized performance of the action

this period.

3. If the agent has played hi before, they agent updates the score as a running average of

all past normalized payoffs observed playing the action.

Formally,

Si,t(ĥi) =



ˆπi(hi) if ĥi = hi and freqi,t−1 = 0

1
freqi,t(hi)

ˆπi(hi) +
freqi,t−1(hi)

freqi,t(hi)
Si,t−1(hi) if ĥi = hi and freqi,t−1 > 0

Si,t−1(hi) otherwise

(B6)

where

ˆπi(hi) = πi(hi)−min[πi(hi)] (B7)

Intuitively, the linear transformation of utility performed to construct ˆπi(hi) ensures

non-negative scoring, which is required for how we perform exploration in Equation B3.

Importantly, this shift in utility is subtracted back out when doing social welfare comparisons

to ensure the payoffs accrued in both our theoretical and computational models remain

comparable.
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3. Updating Exploration Rate:

The exploration rate p is updated using the decay rate λ in the following way:

pt+1 = pte
−λ (B8)

48



C Social Planner Decision Making

At the start of the simulation, the Social Planner:

• Initializes

Each round of the simulation, the social planner:

1. Creates candidate policies

2. Evaluates the candidate policies

3. Stores the best candidate policy

Presently each simulation is run for 10,000 iterations and we repeat the simulation 25

times, each with a new initialization. The policy which performed best across all 25 simula-

tions is the social planner’s best found solution to the commons problem.

Initialization

The social planner starts with policy vector ft=0(hi) with an entry for each action in the

agents’ action set representing the penalty agents will get for choosing that action. Each

entry in the vector is independently and identically drawn from Uniform[0, M], where M is

the maximum fine allowable. In our case, agent i chooses hi ∈ 0, ..., H, so we can write our

initialization step as

ft=0(hi) = θ ∼ Uniform[0,M ] ∀hi ∈ {0, ..., H} (C1)

The social planner also starts with a few initial parameters which will guide how they

explore the policy space, qmutate and qrange which we will discuss shortly. As a baseline we

select qmutate = 0.5 and a qrange = 0.1
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1. Creating Candidate Policies:

From the policy which performed best last round, ft−1(hi), the social planner creates R

candidate policies { ̂ft,r=1(hi), ..., ̂ft,r=R(hi)} to consider, which are variations of ft−1(hi).

To construct a candidate policy, first a copy of ft−1(hi) Then each dimension of the policy

(each position in the vector) has a qmutate chance to have random noise added to it. This

random noise is drawn from a normal distribution with a mean of 0 and a variance scaled

by our qrange parameter. We can formalize the construction of the kth candidate policy as

follows:

̂ft,r=k(h) =


ft−1(h) with prob 1− qmutate

ft−1(h) + z otherwise

∀hi ∈ {0, ..., H} (C2)

where

z ∼ Normal(0,M ∗ qrange) (C3)

and M is the maximum fine allowable.

It is sometimes the case that after a dimension has random noise added to it, it falls

outside of the allowable range for policy values [0, M]. In such cases, we will replace this

illegal policy dimension specification which we’ll denote as d for now with a new value drawn

in the following way:

̂ft,r=k(h)|d ̸∈ [0,M ] =


y ∼ Uniform[0, ft,r=k(h)] if d < 0

y ∼ Uniform[ft,r=k(h),M ] otherwise

(C4)
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Implementing it this way guarantees an allowable value by the second draw and combats

potential directional biases on policy refinement when values in the policy vector are close

to the allowable boundary.

2. Evaluating Candidate Policies:

The best performing policy from last round ft−1(hi) and the R candidate policies ̂ft,r=1(hi), ..., ̂ft,r=R(hi)

are all evaluated this round. To do this, the social planner runs the repeated game under

each policy a number of times and then collects the average social welfare accrued across runs

when the agents faced the policy in question. Thus, a vector of [Ψ(ft−1(hi)), Ψ(ft,r=1(hi)),

..., Ψ(ft,r=R(hi))]. Our results come from a social planner who constructs 7 new candidates

each round of the simulation (R=7), each of which is run 5 times to forecast the average

social welfare the policy is expected to produce.

3. Storing the Best Policy:

Finally, the social planner compares the average social welfare generated by the R candidate

policies against the last round’s best performer. The one expected to produce the highest

social welfare is stored as the best performer of this round. Formally

ft(hi) = argmax
f∈C

Ψ(f) (C5)

where

C = {ft−1(hi), ̂ft,r=1(hi), ..., ̂ft,r=R(hi)} (C6)
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D Social Choice via Democracy

At the start of the simulation, our democracy module:

• Initializes

Each round of the simulation, an election cycle occurs in the following way:

1. Agents forecast well-being under policies

2. Agents vote for a policy

3. Representatives update their platforms

The simulation runs for 20,000 rounds (election cycles). The policy which is adopted at the

end of this process is considered the long run policy solution with which the agents aim to

solve the social dilemma with.

Initialization

The model starts with N representatives, each of which will be given their own initial platform

(policy solution) in much the same way the social planner received their.

ft=0,n=l(hi) = δ ∼ U [0,M ] ∀hi ∈ {0, ..., H} (D1)

where n denotes the representative’s id.

In a similar fashion to the social planner, global values are also set for how policy solutions

are to be explored, utilizing the same parameters from before: qmutate and qrange. Again, as

a baseline we select qmutate = 0.5 and a qrange = 0.1. Additionally we must choose a number

of parties N. We investigate the simple case of N=2.
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1. Agents Forecast Well-Being Under Policies:

For each platform a representative has proposed, agents run forecasts of their utility under the

policy π̂i,t(ft,n=l(.)) by facing the policy a number of times in their head and then calculating

how well they do on average. If the policy is incumbent, they add their forecasts to the

policies past performance. Formally

π̂i,t(ft,n=l(.)) =


1
2
[πi,t(hi, ft,n=l(hi) + πi,t−1(hi, ft−1,n=l(hi))] if ft,n=l(hi)) = ft−1,n=l(hi))

πi,t(hi, ft,n=l(hi)) otherwise

(D2)

From this, each agent produces a vector of welfare forecasts, one for each platform,

denoted Q = {π̂i,t(ft,n=1(.)), ..., π̂i,t(ft,n=N(.))}

2. Agents Vote for a Policy:

Now having forecasted how well each agent expects each policy to perform, the agents vote

for the policies which they believe will give them the most utility on average. Formally

ft(hi) = argmax
f∈Q

π̂i,t(f) (D3)

The policy which wins the most votes is implemented, with ties broken randomly. We

denote the boolean indicating if a representative won majority vote as w(ft,n=l).

3. Representatives Update their Platforms:

After the election, the winning representative makes no change to their policy while all

representatives who lost the election reconsider their strategy. First, they see if their plat-
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form from last round was able to attract more votes v(f̂t,n=l(.)) than in the previous round

v(f̂t,n=l(.)). The better performer is saved as the representatives baseline platform, with ties

going to the most recent policy. This is given formally below as

ft,n=l(.) =


f̂t,n=l(hi)) if w(ft,n=l(hi)) = 0 and v(f̂t,n=l(hi)) ≥ v(f̂t−1,n=l(hi))

ft−1,n=l(hi) otherwise

(D4)

Next, the representative decide what platform to run on for the next election cycle. For

the winner, this is easy as they run on their core platform ft,n=l. For the losers of this cycle,

they instead try a deviation from their baseline platform. This variant platform is created

in much the same way as the social planner produces a candidate. Formally

̂ft+1,n=l(h) =


ft−1,n=l(h) + z if w(ft,n=l(hi)) = 0 with prob qmutate

ft,n=l(h) otherwise

∀hi ∈ {0, ..., H}

(D5)

where

z ∼ Normal(0,M ∗ qrange) (D6)
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